Menu Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Интегральная микросхема INF8577CN. Справочные данные

Бесплатная техническая библиотека

Энциклопедия радиоэлектроники и электротехники / Применение микросхем

 Комментарии к статье

Микросхема INF8577CN является устройством управления жидкокристаллическим индикатором (ЖКИ) с I2С интерфейсом приема отображаемой информации. Интегральная микросхема INF8577CN. Справочные данные. Внешний вид микросхемы
Микросхема размещена в 40-выводном DIP-корпусе (рис. 1). Выполняемые схемой функции: Рис. 1 Внешний вид микросхемы
  • управление ЖКИ в прямом или дуплексном режиме, микросхема управляет 32 сегментами ЖКИ в прямом режиме и 64 сегментами в дуплексном режиме;
  • обеспечение интерфейса шины I2С;
  • возможность использования в качестве расширителя выхода шины I2С.

Ее особенности:

  • напряжение питания - от 2,5 до 6 В;
  • низкая мощность потребления;
  • встроенный генератор для формирования сигналов управления ЖКИ;
  • автоинкрементируемый ввод данных;
  • возможность переключения банков памяти дисплея в прямом режиме управления;
  • возможность каскадирования микросхем для увеличения количества управляемых сегментов до 256;
  • гашение дисплея по сбросу питания.

Ее цоколевка приведена на рис. 2, а структурная схема - на рис. 3. На рис. 4 показана организация внутренней памяти ис. Отображаемая информация хранится в восьми однобайтовых регистрах (их номера - 0...7). Еще один такой же регистр (контрольный) хранит настроечную информацию, управляющую работой микросхемы. Регистры О,2,4,6 объединены в банк "А", регистры 1, 3, 5, 7 - в банк "В".

Интегральная микросхема INF8577CN. Справочные данные. Цоколевка микросхемы
Рис. 2. Цоколевка микросхемы

Интегральная микросхема INF8577CN. Справочные данные. Структурная схема микросхемы
Рис. 3. Структурная схема микросхемы

Интегральная микросхема INF8577CN. Справочные данные. Организация внутренней памяти микросхемы
Рис. 4. Организация внутренней памяти микросхемы

Интегральная микросхема INF8577CN. Справочные данные. Передача первого байта информации
Рис. 5. Передача первого байта информации

Функционирование шины I2C достаточно подробно описано в [1]. Рассмотрим особенности загрузки информации в микросхему INF8577CN. Первым байтом (рис. 5) передается адрес ведомого ("Slave") устройства. Старшие 7 бит этого байта определяют адрес устройства ("Slave"-адрес), а восьмой бит определяет направление передачи данных. Если восьмой бит равен нулю, то выполняется передача данных к ведомому устройству, если же равен единице, то это устройство будет передатчиком. К I2С-шине могут быть подключены несколько устройств с одинаковым "Slave"-адресом. INF8577CN может выполнять только функцию приемника, поэтому восьмой бит всегда равен "0". Ее двоичный "Slave''-адрес - 0111010. Таким образом, первый байт всегда содержит код 01110100.

Таблица 1

Обозначение выводов Назначение выводов Описание
S1...S32 Выходы Выходы управления сегментами ЖКИ
ВР1 Вход/Выход При каскадировании для первой микросхемы - выход управления строкой, для остальных микросхем - вход
А2/ВР2 Вход/Выход Назначение вывода программируется. Либо это вход А1. либо вывод, аналогичный ВР1
VDD Питание Положительный вывод питания
А1 Вход Вход адреса. На выводы АО, А1, А2 подается адрес микросхемы при их каскадировании. Микросхема воспримет данные, если субадрес в посылке данных совпадет с этим адресом
A0/OSC Вход Назначение вывода определяется его подключением. При подключении к RC цепочке - это вход генератора, иначе - вход адреса
VSS Питание Отрицательный вывод питания
SCL Вход Тактовый вход для I2С-шины
SDA Вход/Выход Вход/Выход данных для I2С-шины

Таблица 2

Наименование параметра, единица измерения Обозначение Предельно допустимый режим Предельный режим
не менее не более не менее не более
Напряжение питания, В VDD 2,5 6,0 -0,5 8,0
Входное напряжение, В V1 0 VDD -0,5 VDD + 0,5
Постоянная составляющая ЖКИ драйвера, мВ VBP -20 20 - -
Ток потребления, мА IDDISS - 0,125 -50 +50
Входной ток, мА I1 - - -20 +20
Выходной ток, мА Io - - -25 +25
Напряжение формирования сброса при включении питания, В VPOR - 2 - -
Входное напряжение низкого уровня на выводе АО, В VIL1 0 0,05 - -
Входное напряжение высокого уровня на выводе АО, В VIH1 VDD-0,05 VDD - -
Входное напряжение низкого уровня на выводе А1, В VIL2 0 0,3-VDD - -
Входное напряжение высокого уровня на выводе А1, В VIH2 0,7-VDD VDD - -
Входное напряжение низкого уровня на выводе А2, В VIL3 0 0,1 - -
Входное напряжение высокого уровня на выводе A2, B VIH3 VDD-0,10 VDD - -
Входное напряжение низкого уровня на выводах SCL, SDA, В VIL4 0 0,3-VDD - -
Входное напряжение высокого уровня на выводах SCL, SDA, В VIH4 0,7-VDD 6 - -
Частота тактового сигнала, кГц fSCL - 100 - -
Ширина импульса помехи на I2С-шине при Токр.среды = 25°С, нс tSW - 100 - -

Таблица 3

Наименование параметра, единица измерения Обозначение Норма Режим измерения
не менее не более
Ток потребления, мкА(V1=VDD или V1=VSS) IDD - 125 fSCL=100кГц, ROSC=1MOм, СOSC=680 пФ
75 fSCL=0кГц, ROSC=1MOм, СOSC=680 пФ
20 fSCL=0кГц, режим прямого управления. AO/OSC=VDD, VDD=5 B, Tокр.среды=25 °С
40 fSCL=0кГц, ROSC=1MOм, СOSC=680 пФ, VDD=5 B, Tокр.среды=25 °С
Выходное напряжение низкого уровня на выводе SDA, В VOL - 0,4 VDD=5 B, IOL=3,0 мА
Входной ток утечки по выводам А1, SCL, SDA, мкА IL1 -1 +1 V1=VDD или VSS
Входной ток утечки по выводам А2/ВР2, ВР1, мкА IL2 -5 +5 V1=VDD или VSS
Втекающий ток по выводу А2/ВР2, мкА IPD -5 - V1=VDD
Входной ток утечки по выводу A0/OSC, мкА IL3 -1 +1 V1=VDD
Начальный ток генератора, мкА IOSC - 5 V1=VSS
Выходное напряжение низкого уровня на выходах управления сегментами, В VOL1 - 0,8 VDD=5 B, IOL1=0,3 мА
Выходное напряжение высокого уровня на выходах управления сегментами, В VOH1 VDD-0,8 - VDD=5 B, IOH1=0,3 мА
Выходной ток на выводах управления строками ЖКИ (ВР1, ВР2), мкА Iload 100 - VDD =5 B V0=Vss, VDD или (VSS + VDD)/2
Выходное напряжение высокого уровня на выводах управления сегментами, В V0H2 4,5 - VDD=5 B, IOH2=100 мкА
Выходное напряжение низкого уровня на выводах управления сегментами, В V0L2 - 0,5 VDD=5 B, IOL2=100 мкА
Выходное напряжение низкого уровня на выводах управления сегментами в состоянии "выключено", В V0L3 - 0,5 VDD=2,5 B, IOL3=100 мкА
Частота сигналов на выводах управления ЖКИ, Гц fLCD 65 120 COSC=680 пФ, ROSC=1 МОм

Вторым байтом протокола I2С-шины для микросхемы INF8577CN всегда является контрольный байт, загружаемый в соответствующий регистр (рис. 4). Старший бит этого байта определяет режим работы:

0 - режим прямого управления ЖКИ (однострочный режим);
1 - режим мультиплексного управления ЖКИ (двухстрочный режим).

Следующий бит этого байта определяет банк ЖКИ, содержимое которого будет выводиться на сегменты в режиме прямого управления: "0" - банк А, "1" - банк В. Для режима мультиплексного управления этот бит не имеет значения. Остальные шесть бит этого байта составляют вектор сегментов. Фактически этот вектор является адресом ОЗУ (номер схемы + номер регистра), начиная с которого начинается загрузка отображаемой информации. Вектор сегментов объединяет в единое адресное пространство ОЗУ из нескольких микросхем INF8577CN. К I2С-шине можно подключить до восьми микросхем INF8577CN. Три младших бита вектора сегментов адресуют один из восьми регистров схемы, а три старших бита вектора сегментов определяют, какая из микросхем INF8577CN будет выбрана. Данные будут записаны в ту микросхему, для которой эти три бита совпадут с субадресом, установленным на выводах микросхемы АО, А1, А2. Этот субадрес формируется по следующему правилу:

- вывод А1 является входом, и на него обязательно нужно подать входной уровень нуля или единицы;
- выводы АО и А2 являются входами-выходами, и на них можно (но не обязательно) подать входной уровень нуля или единицы, либо вообще не подавать входное напряжение. В этом случае микросхема воспринимает состояние выводов АО и А2 как логический ноль.

После второго байта начинается передача данных. Первый байт данных записывается в ОЗУ одной из микросхем INF8577CN - именно в ту микросхему и в то место ОЗУ, на которое указывает вектор сегментов. Микросхема, которая приняла информацию, формирует А-условие, подтверждающее прием. После этого вектор сегментов автоматически увеличивается, и микросхемы готовы принимать следующий байт данных. Длина цепочки данных не ограничена. Все микросхемы отслеживают изменение вектора сегментов, и данные автоматически записываются в ОЗУ нужной микросхемы. Если вектор сегментов достиг максимального значения 111111, то следующее значение будет 000000.

Величина инкремента равна 1 или 2 и определяется тем, в каком режиме функционируют микросхемы. Инкремент равен 1 в режиме мультиплексного управления, то есть регистры микросхем загружаются подряд, один за другим, без учета того, к какому банку они принадлежат. В режиме прямого управления величина инкремента равна 2, что обеспечивает загрузку либо банка "A", либо банка "B" вне зависимости от того, какой из них отображается.

Интегральная микросхема INF8577CN. Справочные данные. Схема драйвера ЖКИ с прямым управлением
Рис. 6. Схема драйвера ЖКИ с прямым управлением

Интегральная микросхема INF8577CN. Справочные данные. Схема драйвера с дуплексным управлением
Рис. 7. Схема драйвера с дуплексным управлением

В табл. 1 приведено назначение выводов ИС, в табл. 2 даны предельные и предельно допустимые значения параметров, в табл. 3 - основные электрические параметры. На рис. 6 приведена схема драйвера ЖКИ с прямым управлением, на рис. 7 - схема драйвера с дуплексным управлением, на рис. 8 - схема 32-разрядного расширителя I2C-шины. Следуем отметить, что в режиме дуплексного управления необходимо использовать ЖКИ с двумя отдельными общими выводами либо два отдельных ЖКИ.

Интегральная микросхема INF8577CN. Справочные данные. Cхема 32-разрядного расширителя I<sup>2</sup>C-шины
Рис. 8. Cхема 32-разрядного расширителя I2C-шины

Литература

  1. К. Конов. Интерфейс I2C в телевизоре. - Радиолюбитель, 2000, N9, С.24...26

Публикация: cxem.net

Смотрите другие статьи раздела Применение микросхем.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Токсичность интернета преувеличена 07.01.2026

Социальные сети нередко воспринимаются как арена постоянной агрессии, оскорблений и распространения фейковой информации. Новое исследование Стэнфордского университета показывает, что реальность значительно отличается от популярного представления: интернет гораздо менее токсичен, чем многие пользователи считают. Ученые опросили более тысячи американцев, попросив их оценить долю пользователей соцсетей, которые ведут себя агрессивно или распространяют ненависть. Оказалось, что впечатления людей сильно преувеличивают масштабы проблемы. Например, респонденты считали, что почти половина пользователей Reddit хотя бы раз оставляла оскорбительные комментарии, тогда как фактические данные платформы показывают, что таких людей не более 3%. Аналогичная ситуация наблюдается с дезинформацией. Опрос показал, что большинство участников считали почти половину аудитории Facebook распространителями фейковых новостей, однако статистика говорит об обратном: фактическая доля таких пользователей состав ...>>

Процессоры Ryzen AI 400 07.01.2026

Современные вычисления все больше ориентируются на интеграцию искусственного интеллекта и высокую производительность в компактных устройствах, таких как ноутбуки и мини-ПК. Новая линейка процессоров AMD Ryzen AI 400 демонстрирует, как разработчики объединяют мощные центральные ядра, графику и нейросетевые ускорители в одном чипе, чтобы удовлетворять растущие потребности пользователей в играх, контенте и ИИ-приложениях. AMD представила процессоры серии Gorgon Point, которые включают до 12 ядер Zen 5 и до 24 потоков вычислений. Чипы поддерживают интегрированную графику RDNA 3.5, обеспечивают максимальную тактовую частоту до 5,2 ГГц и имеют энергопотребление от 15 Вт до 54 Вт. Особое внимание уделено NPU, способному обрабатывать до 60 триллионов операций в секунду (TOPS), что делает эти процессоры эффективными для задач с искусственным интеллектом. Конструкция Ryzen AI 400 сочетает ядра Zen 5 и Zen 5c, обеспечивая высокую гибкость и производительность. Несмотря на то, что архитектур ...>>

Женщины лучше распознают признаки болезни по лицу 06.01.2026

Способность распознавать, что кто-то нездоров, часто проявляется интуитивно: бледная кожа, опущенные веки, уставшее выражение лица могут сигнализировать о недомогании. Новое исследование международной группы ученых показало, что женщины в среднем точнее мужчин улавливают такие тонкие невербальные признаки болезни, что может иметь эволюционные и социальные объяснения. В отличие от предыдущих работ, где использовались отредактированные фотографии или имитация больных лиц, ученые решили проверить, насколько люди способны распознавать естественные признаки недомогания. Такой подход позволил оценить реальную чувствительность к изменениям в лицах, возникающим при болезни. В исследовании приняли участие 280 студентов, поровну мужчин и женщин. Участникам предложили оценить 24 фотографии, на которых изображены люди как в здоровом состоянии, так и во время болезни. Это дало возможность сравнить восприятие естественных признаков недомогания в реальных лицах. Для анализа состояния каждого ...>>

Случайная новость из Архива

Ложь меняет мозг 29.10.2016

Раз соврав, дальше мы лжем все проще и проще - наверняка многие знают это по собственному опыту. Как показали эксперименты исследователей из Университетского колледжа Лондона, причины такого психологического эффекта кроются в области мозга, называемой амигдалой, или миндалевидным телом - часто его называют центром страха, однако на деле амигдала принимает участие в формировании любых эмоций.

Человеку нужно было ввести в заблуждение своего напарника относительно того, сколько монет лежит в стеклянном стакане. Вранье поощрялось: если другого удалось убедить, что монет больше, чем на самом деле, обманщик получал вознаграждение. Одновременно за активностью мозга врущих наблюдали с помощью магнитно-резонансной томографии. Выяснилось, что с каждым следующим обманом уменьшалась активность миндалевидного тела, причем, что любопытно, чем сильнее падала активность амигдалы, тем больше была очередная ложь про монеты и стакан.

Очевидно, когда человек врет в первый раз, миндалевидное тело "напрягается" и мы чувствуем не совсем приятные эмоции в связи с собственной ложью. Но потом возникает что-то вроде привыкания, амигдала смиряется, и мы врем, не опасаясь неприятных ощущений. Однако до конца подавить внутреннее противодействие все же не удается: в опыте предусматривался максимальный уровень вранья насчет количества монет, но до него никто не дошел.

Заметим, что пока речь шла о самом неприятном виде лжи - лжи исключительно в собственных интересах. Когда участникам эксперимента предлагали врать в общих интересах, то есть когда выгоду получал не только сам врущий, но и его напарник, то амигдала реагировала не так остро, и человек в таком случае врал больше и охотнее - скорее всего, потому, что ложь получала некое оправдание.

Можно предположить, что большую роль здесь играют социальные отношения: мы с детства слышим, что врать нехорошо, что за ложь нас накажут, и наш прекрасно обучающийся мозг в конце концов запоминает это как необходимое правило жизни - хотя время от времени нам через него приходится переступать.

Другие интересные новости:

▪ Что последует за FULL HD

▪ Бронированный суперкар Aston Martin DB11

▪ Гибридный квадроцикл Krampus

▪ Микроконтронтроллерная плата Raspberry Pi Pico

▪ Беговая дорожка для стадионов с улучшенным покрытием и сенсорами

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Советы радиолюбителям. Подборка статей

▪ статья Шестая часть света. Крылатое выражение

▪ статья Сколько человек погибло во время Великого лондонского пожара 1666 года? Подробный ответ

▪ статья Электромонтер энергоснабжения. Типовая инструкция по охране труда

▪ статья Диагностический прибор для автомобильного двигателя с контролером BOSCH. Энциклопедия радиоэлектроники и электротехники

▪ статья Исчезающая карта. Секрет фокуса

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:





Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2026