Menu Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Оптические кабели в грозозащитном тросе. Справочные данные

Бесплатная техническая библиотека

Энциклопедия радиоэлектроники и электротехники / Справочные материалы

 Комментарии к статье

Подвешивание волоконно-оптических кабелей на линиях электропередач (ЛЭП) находит все более широкое применение. Подобная линия протянута, например, между Санкт-Петербургом и Финляндией. Ведутся работы по прокладке кабеля параллельно РРЛ на участке цифровой магистрали Москва-Хабаровск. Так вот на этом участке около 3600 км линии связи будут выполнены с помощью оптического кабеля в грозозащитном тросе, размещенного на ЛЭП.

Публикуемая здесь статья, содержащая краткий рассказ о конструкции таких кабелей, отвечает на запросы читателей.

Оптические кабели связи могут прокладываться под землей, под водой, а также подвешиваться на опорах воздушных линий связи (ВЛС). Все большее распространение получает совмещение ВЛС с ЛЭП (рис. 1), имеющая ряд достоинств.

Оптические кабели в грозозащитном тросе

Известно, что каждая страна располагает разветвленной сетью высоковольтных ЛЭП. Следовательно, нет необходимости строить специальные опоры ВЛС, а подвешивать кабель на существующих (или строящихся) опорах ЛЭП, к тому же более мощных, чем на ВЛС. При этом оптический кабель заключен внутри обязательного элемента ЛЭП - заземленного металлического грозозащитного троса (рис. 2). В отечественной практике оптические кабели в грозозащитном тросе обозначаются аббревиатурой ОКГТ. Этот трос служит не только силовым элементом, несущим кабель, но и экранирует его от внешних электромагнитных влияний.

Оптические кабели в грозозащитном тросе

Основное преимущество комбинированных линий ЛЭП - ВЛС перед подземными кабельными магистралями связи проявляется тогда, когда трасса линии проходит через труднодоступные для подземной прокладки местности, например, зоны вечной мерзлоты со вспучивающимся грунтом, болота, скальные породы.

Недостатком таких линий вполне обоснованно можно предположить повреждение троса, а значит, и кабеля, при ударах в него молнии, что нередко происходит в грозоопасных районах, а также вследствие коротких замыканий на ЛЭП, вызванных различными причинами. Чтобы избежать этих неприятностей, приводящих к перерывам в работе линий связи, была разработана специальная технология производства троса и кабеля, подвешиваемого на ЛЭП. Благодаря этой технологии при ударе молнии температура в кабеле не превышает 170...200°С, что безопасно для его жизнестойкости. Правда, такой кабель (и трос) оказывается существенно дороже обычного. Но при этом не безынтересно отметить, что повреждение троса с оптическим кабелем происходит примерно раз в пять реже, чем подземного кабеля.

Основу конструкции оптического кабеля составляют так называемые модули. Как правило, это - пластмассовые или металлические трубки диаметром 2...3 мм, в каждой из которых свободно размещаются 2...24 оптических волокна (в отдельных конструкциях их число доходит до 60).

Оптическое волокно состоит из двухслойной кварцевой прозрачной нити-световода диаметром 125 мкм с защитным полимерным покрытием (наружный диаметр 250 мкм).

Кабели бывают как одномодульные, так и многомодульные, содержащие до шести модулей (рис.3).

Оптические кабели в грозозащитном тросе

Кабели с пластмассовыми модулями. В одномодульных кабелях модуль относительно большого диаметра расположен в центре (рис. 4). В многомодульных модули - периферийные; они скручиваются в повив вокруг центрального опорного элемента круглого сечения (рис. 5). Максимальное число периферийных модулей - шесть. Если их меньше, то в повив для поддержания его цилиндрической формы добавляется до шести необходимое число заполнителей - пластмассовых корделей такого же диаметра, как и у модулей.

Оптические кабели в грозозащитном тросе

Как центральный модуль, так и вся совокупность скрученных периферийных модулей и заполнителей, которая называется сердечником, заключается в полимерную или металлическую оболочку. Свободное пространство внутри каждого модуля и между модулями (и заполнителями, если они есть) в скрученном сердечнике заполняется гидрофобным (водоотталкивающим) компаундом, препятствующим проникновению влаги к оптическим волокнам. В случае соприкосновения влаги с кварцевым световодом возрастают потери передаваемых световых сигналов связи и происходит ухудшение механических характеристик волокна вплоть до его разрушения.

Поверх оболочки накладываются проволоки троса. Они могут быть стальными или алюминиевыми диаметром 1,5...3,25 мм, но наибольшее распространение получили стальные, плакированные алюминием (алюминированные) и алдреевые - из сплава алюминия с магнием, кремнием, железом. Выбор материала и диаметра проволок зависит как от размера оптического кабеля, так и от эксплуатационных требований к физикомеханическим параметрам троса.

В кабелях с пластмассовыми модулями, т. е. "в пластмассовом исполнении", трос бывает одноповивный, но чаще двухповивный. Во всех случаях он состоит из комбинации двух типов проволок: стальных алюминированных, обеспечивающих механическую прочность троса, и алдреевых, обладающих высокими электропроводностью и температуростойкостью, что необходимо для защиты от ударов молний и коротких замыканий, когда в тросе возникает большая сила тока, развивается высокая температура и возможен недопустимый перегрев оптического кабеля.

Так, например, в одном из вариантов двухповивного троса внутренний повив образован комбинацией из стальных алюминированных проволок 10х2,0 мм и алдреевых - 5х2,0 мм, а внешний повив - целиком алдреевый из проволок 14х3,25 мм. В другой конструкции наоборот: внутренний повив образуют 12х3,25 мм алдреевых проволок, а внешний - 13х3,25 мм алдреевых и 5х3,25 стальных алюминированных проволок.

Наружный диаметр кабелей как одномодульных, так и многомодульных - 12,5...25 мм. Их масса - 300...1200 кг/км. Суммарное сечение проволок троса - 80...335 мм2 . Расчетная разрывная нагрузка - 40...125 кН.

Кабели с металлическими модулями. Конструкции их сердечников значительно отличаются от сердечников кабелей с пластмассовыми модулями. Число металлических модулей в кабеле меньше, а именно: 1, 2, 3, 4. Трубка модуля стальная или стальная алюминированная (из нержавеющей стали). Если в кабеле имеются один или два модуля, то они располагаются в повиве, который дополняется соответственно пятью или четырьмя стальными алюминированными проволоками. Кроме того, одна такая же проволока в центре выполняет роль опорного элемента.

В случае трех или четырех модулей они скручиваются между собой и располагаются в центре кабеля.

В одних конструкциях поверх целиком металлического сердечника непосредственно накладываются проволоки троса (рис. 6) - одним или двумя повивами, например, стальные плакированные 5х3,0 мм, затем алдреевые 12х3,0 мм и, наконец, снова алдреевые 18х3,0 мм.

Оптические кабели в грозозащитном тросе

В других конструкциях сердечник заключается в трубку из сегментных алдреевых проволок, поверх которой следуют один или два повива проволок троса в комбинации из стальных алюминированных и алдреевых (рис.7).

Оптические кабели в грозозащитном тросе

Диаметр кабелей - 10...22 мм, масса - 200...1000 кг/км. Суммарное сечение металлических элементов - 70...285 мм2 . Расчетная разрывная нагрузка - 40...120 кН.

Кроме кабелей в грозозащитном тросе, существуют еще несколько типов оптических кабелей, предназначенных для ВЛС. Это - самонесущие кабели, под оболочкой которых имеется силовой несущий элемент. Им может быть стальной или синтетический трос, стеклопластиковый пруток, либо повив из высокопрочных синтетических нитей. Это так называемые повивные кабели. Они навиваются на грозозащитный трос или на фазный провод ЛЭП. Наконец, кабели, прикрепленные к грозозащитному тросу либо путем общей обмотки лентой, либо посредством часто расположенных бандажей.

Согласно информациям последних лет, в зарубежной практике из всех перечисленных типов подвесных оптических кабелей наибольшее распространение (до 85 %) получили кабели в грозотросе.

Автор: Д.Шарле, г.Москва

Смотрите другие статьи раздела Справочные материалы.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Кислотность океана разрушает зубы акул 03.10.2025

Мировые океаны выполняют важнейшую функцию - они поглощают около трети углекислого газа, выбрасываемого в атмосферу. Это помогает замедлять темпы глобального потепления, но имеет и обратную сторону. Растворяясь в воде, CO2 образует угольную кислоту, которая повышает концентрацию водородных ионов и приводит к снижению pH. Вода становится более кислой, а последствия этого процесса уже заметны для морских экосистем. Средний показатель кислотности океана сейчас равен примерно 8,1, тогда как еще недавно за условную норму брали значение 8,2. По прогнозам, к 2300 году уровень может упасть до 7,3 - это сделает океан почти в десять раз кислее нынешнего состояния. Для обитателей морей подобные изменения означают не просто сдвиг химического равновесия, а реальную угрозу физиологическим процессам, начиная от формирования раковин у моллюсков и заканчивая охотничьим поведением акул. Чтобы выяснить, как именно кислотная среда отражается на зубах акул, группа немецких исследователей провела эксп ...>>

Почтовый космический корабль Arc 03.10.2025

Космические технологии становятся частью инфраструктуры, способной повлиять на логистику, медицину и даже военную сферу. Идея использовать орбиту как глобальный склад для срочных поставок звучала еще недавно как научная фантастика, но стартап Inversion пытается превратить ее в практическое решение. Компания Inversion появилась в начале 2021 года благодаря Джастину Фиаскетти и Остину Бриггсу, которые на тот момент были студентами Бостонского университета. Их замысел состоял в том, чтобы сделать возможной доставку грузов не только через спутниковые сети данных, но и в буквальном смысле - физических предметов. В основе лежит простая мысль: если космос обеспечивает доступ к любой точке Земли, то и грузы должны перемещаться тем же маршрутом. Уже за три года работы команда из 25 специалистов успела построить демонстрационный аппарат "Ray". Его запуск состоялся в рамках миссии SpaceX Transporter-12. Устройство весом 90 килограммов проверяло ключевые технологии Inversion, включая двухком ...>>

Лазерное обогащение урана 02.10.2025

Ядерная энергия остается одним из ключевых источников стабильного электричества, особенно для стран с растущими потребностями в энергоснабжении. Однако обеспечение бесперебойных поставок топлива для атомных станций требует современных технологий обогащения урана, которые одновременно эффективны и безопасны. Американская компания Global Laser Enrichment (GLE) делает значительный шаг в этом направлении, завершив масштабное тестирование лазерной технологии обогащения урана. Демонстрационная программа была проведена на объекте в Уилмингтоне, Северная Каролина. Тестирование технологии SILEX (Separation of Isotopes by Laser EXcitation), разработанной австралийской Silex Systems, стартовало в мае 2025 года и продлится до конца года. В ходе экспериментов компания планирует получить сотни фунтов низкообогащенного урана (LEU), который может быть использован в качестве топлива для атомных электростанций. GLE была создана в 2007 году для коммерциализации лазерных методов обогащения урана в С ...>>

Случайная новость из Архива

Совы и тишина пропеллеров 07.07.2015

Ученые из Кембриджского университета (Великобритания) разработали технологию, которая поможет значительно снизить шум от работы пропеллеров.

Исследователи уверяют, что в своей работе они ориентировались на сов, которые способны летать почти бесшумно. Такую способность они приобрели благодаря сложной структуре перьев.

На передней части крыла располагаются гибкие щетинки, а на задней - эластичная окантовка. Это позволяет снизить турбулентность воздушных потоков и тем самым уменьшить шум.

Ученые напечатали на 3D-принтере пластик с поверхностью, напоминающей конструкцию крыльев совы, и испытали его на экспериментальной турбине. Замеры показали снижение уровня шума на 10 децибел.

Использование такого материала в турбинах позволит увеличить частоту вращения и выработку энергии, а в перспективе покрытие планируется применять на пропеллерах авиационной техники.

Другие интересные новости:

▪ Новый метод фотосинтеза поможет решить проблему с голодом

▪ Рекорд по продолжительности пребывания женщины в космосе

▪ Игровой 21" монитор Iiyama ProLite GE2488HS-B1

▪ Микросхему охлаждает веер

▪ Собаки тоже плачут от радости

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Электрические счетчики. Подборка статей

▪ статья Густав Климт. Знаменитые афоризмы

▪ статья Кто изобрел аккордеон? Подробный ответ

▪ статья Наладчик станков и станочных приспособлений. Типовая инструкция по охране труда

▪ статья Каскодный усилитель. Энциклопедия радиоэлектроники и электротехники

▪ статья Белорусские пословицы и поговорки. Большая подборка

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:





Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2025