Menu Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Мостовой УМЗЧ с БСИТ. Энциклопедия радиоэлектроники и электротехники

Бесплатная техническая библиотека

Энциклопедия радиоэлектроники и электротехники / Усилители мощности транзисторные

 Комментарии к статье

В конструкциях радиолюбителей мощные транзисторы, называемые БСИТ и предназначенные в основном для переключательных устройств (импульсных блоков питания, блоков строчной развертки, мощных выключателей), пока применяются не так уж часто.

Предлагаем вниманию читателей описание одного из вариантов стоваттного УМЗЧ с применением именно таких транзисторов. Ссылаясь на метрологические показатели, а также результаты многократных экспертных прослушиваний, автор довольно высоко оценивает свою разработку.

Полемика среди радиолюбителей и разработчиков, обсуждающих вопрос "лучшего звучания" ламповых усилителей, продолжается до сих пор [1]. Следует признать, что в УМЗЧ на ламповых триодах малые искажения даже при работе на комплексную нагрузку обусловлены, в частности, внутренней обратной связью, присущей этим приборам. Но достоинства вакуумного триода свойственны и полевому транзистору с управляющим переходом, получившем название транзистора со статической индукцией СИТ [1]. Другой модификацией таких приборов является биполярный транзистор со статической индукцией БСИТ. работающий со значительным током затвора и имеющий выходную характеристику, как у генераторной лампы в режиме работы с сеточными токами. Входная его характеристика практически такая же. как у биполярного.

Время спада тока прибора с вертикальным нормально закрытым каналом n-ти-па - мощного БСИТ КП958А [2] - составляет Tсл = 60 нс, что примерно того же порядка, что и у обычных мощных биполярных транзисторов, однако напряжение насыщения (зависит от степени насыщения транзистора) в несколько раз меньше. Применение БСИТ оказалось достаточно эффективным в УМЗЧ. выполненных по мостовой схеме (3).

Предлагаемая здесь схема стоваттного мостового УМЗЧ на БСИТ приведена на рисунке.

Мостовой УМЗЧ с БСИТ

Основные технические характеристики

  • Номинальное входное напряжение, В......1
  • Номинальная выходная мощность, Вт, на Rн = 8 Ом......100
  • Неравномерность АЧХ в диапазоне частот 10...100 000 Гц, дБ, не более......1
  • Коэффициент гармоник на частоте 1000 Гц, %, не более......0.02
  • Ток покоя, мА, не более......500
  • Относительный уровень помех, дБ, не более......80
  • Скорость нарастания выходного напряжения, В/мкс, не менее......50

УМЗЧ содержит два практически идентичных усилителя, один из которых по отношению ко входному сигналу является инвертирующим. Нагрузка включена между выходами усилителей. Благодаря тому, что выходное напряжение усилителей прикладывается к нагрузке в противофа-зе. напряжение на выходе удваивается. ОУ является усилителем напряжения, и для верхнего по схеме каскада с ООС коэффициент усиления Кu = R3/R1 + 1, а для нижнего он определяется отношением R18/R16. При указанных номиналах резисторов усиление обоих усилителей в схеме моста одинаково.

Кроме ОУ. усилитель содержит фазо-инверсные каскады на транзисторах разной структуры VT4, VT5. Вместе с ними транзисторы VT6 - VT9 выполняют функцию усилителей тока, работающих в классе АВ. Верхний по схеме усилитель охвачен последовательной ООС: она подается с выхода на инвертирующий вход ОУ (вывод 2 микросхемы DA1) через делитель R3R1; нижний по схеме усилитель охвачен параллельной ООС через резистор R18.

Выходное напряжение мостового усилителя определяется суммой выходного напряжения двух ОУ (падением напряжения на переходах затвор - исток можно пренебречь). Для увеличения выходного напряжения применено "следящее" питание ОУ. изменяющееся синхронно с его выходным сигналом. При отсутствии входного сигнала напряжение в точке соединения стабилитронов VD1 и VD2 равно нулю. При этом на выводах 7 и 4 микросхемы DA1 напряжение питания поддерживается равным 15 В благодаря стабилизаторам, выполненным на транзисторах VT1, VT2. Появление на выходе усилителя сигнала приводит к синфазному смещению питающих напряжений ОУ. в связи с чем ограничения сигнала ОУ не происходит. Таким образом происходит увеличение выходного напряжения ОУ примерно вдвое.

Резистор R7 соединяет стабилитроны VD1, VD2 с выходом усипителя, его сопротивление при необходимости подбирают при настройке, заменив его переменным (сопротивлением 3 - 5 кОм). Подавая на вход УМЗЧ сигнал от генератора звуковой частоты, устанавливают максимально возможное неискаженное напряжение на выходах обоих плеч усилителя (контроль по осциллографу). При этом надо помнить, что чрезмерное уменьшение сопротивления может нарушить устойчивость усилителя.

Резисторы R6, R8, R9 и транзистор VT3 создают начальное смещение на затворах транзисторов усилителя тока. Изменяя положение подстроечного резистора R8. можно регулировать значение тока покоя выходного каскада в широких пределах. Транзистор VT3 служит для термостабилизации режима, ему необходимо обеспечить тепловой контакт с теплоотводами транзисторов.

Для достижения малых искажений транзисторы VT4 - VT9 желательно подобрать попарно, для чего снимают зависимость тока стока при различных значениях тока затвора при Uси = 10 В. Желательно провести измерения в нескольких точках. В одном каскаде устанавливают транзисторы с близкими характеристиками.

Резисторы R1, R3, R16, R18 - С2-29В с допуском 1% (можно до 2%). Остальные резисторы - любого типа с допуском не более 10%. Микросхему К140УД11 можно заменить на К154УДЗА без каких-либо изменений в схеме, но, возможно, потребуется соответствующая высокочастотная коррекция. ОУ К154УДЗА по своим частотным свойствам более предпочтителен, хотя не исключено, что уменьшится максимальная выходная мощность УМЗЧ.

Выходные транзисторы нужно установить на теплоотводы с поверхностью не менее 600 см2 для каждого транзистора. Автор использовал в своей конструкции игольчатые радиаторы с принудительным охлаждением от небольшого вентилятора. В этом случае оказалось достаточным использовать радиатор небольших размеров.

Правильно собранный усилитель начинает работать сразу, нужно только выставить токи покоя обоих плеч усилителя около 200...250 мА и максимально возможную амплитуду выходного сигнала подбором резистора R7.

Достаточно просто можно увеличить мощность усилителя вдвое - до 200 Вт - удвоением числа транзисторов выходных каскадов (VT8. VT9). Для равномерного распределения токов в эмиттерные цепи этих транзисторов надо включить уравнивающие резисторы сопротивлением 0.1...0,2 Ом.

Литература

  1. Схемотехника устройств на мощных полевых транзисторах. Справочник. Под ред. В. П. Дьяконова. - М: Радио и связь, 1994.
  2. chip-dip.ru/catalog/index.html
  3. Корзинин М. Схемотехника усилителей мощности звуковой частоты высокой верности. - Радио. 1997. № 3. с. 15 - 17.

Автор: Н.Рекунов, г.Тольятти Самарской обл.

Смотрите другие статьи раздела Усилители мощности транзисторные.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Особенности почек помогают легче переносить высоту 18.01.2025

Высокогорные регионы всегда привлекали внимание исследователей, изучающих, как человек адаптируется к жизни в условиях разреженного воздуха. Недавнее исследование группы ученых из Университета Маунт-Ройал в Канаде, возглавляемое доктором Тревором Деем, проливает свет на важную роль почек в акклиматизации к большим высотам. Работы канадских ученых объясняют, почему представители народности шерпа, которые веками живут в высокогорных районах Тибета, значительно лучше переносят высокогорье. В своем исследовании ученые наблюдали за дыханием и составом крови участников во время их подъема на высоту 4300 метров в Гималаях, в Непале. Эксперимент проводился с участием двух групп: одна состояла из жителей низменностей, не привыкших к горной среде, а другая - из шерпов, чей организм приспособлен к жизни на большой высоте. Основное различие между этими группами было в том, как их организмы реагировали на дефицит кислорода в воздухе. У шерпов наблюдалась более быстрая и масштабная адаптация к ...>>

Производство электричества с помощью термоядерного синтеза 18.01.2025

Американская компания Commonwealth Fusion Systems (CFS) нацелена на создание первой в мире термоядерной электростанции, способной подключаться к электрической сети. Этот амбициозный проект, известный как ARC (Affordable, Robust, Compact), будет построен вблизи города Ричмонд, штат Вирджиния. В соответствии с планами, новая электростанция сможет производить до 400 мегаватт чистой энергии, что вполне хватит для обеспечения электричеством 150 тысяч домохозяйств. Прогнозируется, что станция начнет работу в 2030-х годах. Принцип работы термоядерной электростанции основан на процессе термоядерного синтеза, который происходит в ядре звезд. В отличие от традиционной атомной энергетики, где используется деление ядер атомов с образованием радиоактивных отходов, термоядерный синтез создает в качестве побочного продукта безопасный гелий. Для того чтобы удерживать плазму с температурой свыше 100 миллионов градусов Цельсия, установка будет использовать мощные магнитные поля. Тем не менее, н ...>>

Экологическая защита для овощей и фруктов 17.01.2025

Исследователи из женского колледжа Шри Нараяна в Колламе, Керала, Индия, разработали инновационный способ продления свежести фруктов и овощей. Группа под руководством Пурнимы Виджаян предложила использовать съедобное покрытие, созданное на основе целлюлозных нановолокон (CNF), полученных из луковой шелухи. Этот подход не только продлевает срок хранения продуктов, но и способствует их безопасности благодаря включению нанокуркумина, известного своими антимикробными свойствами. Основным компонентом покрытия являются CNF, полученные из переработанных отходов лука. Эти нановолокна соединяются с синтетическим биополимером, который улучшает структуру покрытия, устраняя проблемы с водостойкостью и термической стабильностью, ранее свойственные материалам на основе CNF. Кроме того, добавление нанокуркумина усиливает антимикробные свойства покрытия, делая его особенно эффективным для предотвращения порчи. Для проверки эффективности этой разработки ученые провели эксперимент с апельсинами. П ...>>

Случайная новость из Архива

Воду разделили на две разные жидкости 31.05.2018

Швейцарские ученые впервые в истории смогли разделить воду на две разные жидкости, состоящие из двух типов молекул воды.

Пространственная структура и некоторые физические свойства молекул воды зависят от спина атомов водорода. Если спин у обоих атомов одинаковый, такая молекула называется параводой, если они противоположны - ортоводой. Точные различия между ними пока не известны, однако в 2002 году российские физики показали, что ортовода конденсируется хуже, чем паравода.

Законы квантовой механики запрещают прямое превращение одной формы воды в другую, поэтому в любом стакане с жидкостью должны одновременно присутствовать обособленные группы и пара-, и ортоводы. Тем не менее первые же опыты показали, что разделить их невозможно, так как некоторые взаимодействия между молекулами воды, характер которых пока не ясен, иногда заставляют их менять спин атомов водорода.

Виллич и его коллеги впервые смогли решить эту, казалось, невозможную задачу, охладив воду до температуры, близкой к абсолютному нулю, и заставив молекулы пара- и ортоводы самостоятельно разделиться на два лагеря, не соприкасающиеся друг с другом.

Этого удалось добиться, превратив воду в своеобразный пар - чрезвычайно разреженную смесь молекул воды и атомов аргона, не застывающую даже при сверхнизких температурах. Подготовив достаточное количество этой смеси, ученые пропустили ее через мощный генератор электростатических полей. Она разделилась на два узких потока молекул, один из которых состоял только из параводы, а второй - только из ортоводы.

Потоки врезались в облачко другого газа, состоявшего из ионов кальция и диазенилия - непрочного соединения двух атомов азота и одного атома водорода. Диазенилий, даже при сверхнизких температурах активно взаимодействуйствующий с водой, отдавая ей лишний водород, стал одним из первых межзвездных химических соединений, открытых астрономами в космосе в последние 50 лет.

Обстреливая это облако и потоки лучами ультрафиолета, ученые смогли проследить за тем, как обе формы воды взаимодействуют с диазенилием, и раскрыть несколько интересных свойств пара- и ортоводы. К примеру, выяснилось, что паравода заметно быстрее и активнее вступает в реакции с молекулами N2H, что говорит о существенных различиях в их "поведении" и химических взаимодействиях.

Другие интересные новости:

▪ Бактериальный вампиризм

▪ Оплата с помощью улыбки

▪ Генератор для наноприбора

▪ Фотодатчик HDSL-9000 для подсвета ЖК-индикаторов и клавиатур

▪ Птичий грипп в жидком азоте

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Радиоэлектроника и электротехника. Подборка статей

▪ статья Советы сантехника. Советы домашнему мастеру

▪ статья Какой цвет имеет самая дорогая икра? Подробный ответ

▪ статья Мотоцикл-тягач. Личный транспорт

▪ статья Выход с ПК на наушники. Энциклопедия радиоэлектроники и электротехники

▪ статья Батарейка из алюминиевых кружков. Химический опыт

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:





Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2025