Menu English Ukrainian Russian Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Импульсный усилитель системы ближней радиолокации. Энциклопедия радиоэлектроники и электротехники

Бесплатная техническая библиотека

Энциклопедия радиоэлектроники и электротехники / Радиолюбителю-конструктору

 Комментарии к статье

Для измерения скорости движущихся объектов, например, автомобилей, широко используются системы ближней радиолокации, основанные на эффекте Доплера [1]. Генераторы СВЧ колебаний указанных систем выполняются чаще всего на диодах Ганна, работающих в непрерывном режиме. Возможности таких систем ближней радиолокации могут быть расширены при переводе генераторов в импульсный режим работы. В этом случае появляется возможность, кроме измерения скорости объектов, определять также и расстояние до них.

Импульсный усилитель системы ближней радиолокации
(нажмите для увеличения)

В соответствии с паспортными данными на диоды Ганна [2]. для их возбуждения требуются генераторы импульсов положительной полярности амплитудой 5...6 В при выходном токе 1.5...2 А. Стандартные генераторы импульсных сигналов работают, как правило, на стандартную нагрузку 50 Ом и имеют выходное напряжение 1 В.

На рис.1 приведена схема усилителя, позволяющего повысить выходные параметры стандартного генератора импульсных сигналов до требуемых значений. Усилитель содержит входной резистивный делитель напряжения, два каскада усиления, генератор стабильного тока, контрольный выход.

Импульсный усилитель системы ближней радиолокации
(нажмите для увеличения)

Входной делитель напряжения выполнен на резисторах R1...R3. Он обеспечивает согласование усилителя с выходным сопротивлением генератора и стабилизацию глубины общей отрицательной обратной связи, охватывающей усилитель, В обоих каскадах усилителя, построенных на транзисторах VT2 и VT4. применена активная коллекторная термостабилизация токов покоя (3). Сами токи покоя транзисторов выбирались, исходя из неискаженного усиления импульсов со скважностью, изменяющейся от 10 до бесконечности. Для транзистора VT2 ток покоя равен 70 мА, для транзистора VT4 - 300 мА. Токи устанавливаются подбором сопротивлений R5 и R12.

В процессе запуска генератора на диоде Ганна его сопротивление изменяется. Для уменьшения влияния изменяющегося сопротивления нагрузки на характеристики усилителя его выходной каскад выполнен по схеме с общим коллектором, а сам усилитель охвачен общей отрицательной обратной связью через цепочку R7-C8. В результате, выходное сопротивление усилителя не превышает 0,4 Ом.

Изменение температуры кристалла диода Ганна приводит к изменению мгновенной частоты генерации [4]. Для уменьшения указанного фактора в усилителе установлен генератор стабильного тока на транзисторе VT5, обеспечивающий подогрев диода в периоды между импульсами запуска. Регулировка тока генератора осуществляется с помощью потенциометра R18 в пределах 0.1...0.5 А. В усилителе предусмотрен контрольный выход для регистрации амплитуды импульсов, подаваемых на диод Ганна. Диод VD1 установлен для защиты транзисторов усилителя от пробоя при неправильной полярности питания. Диод VD2 необходим для восстановления постоянной составляющей на выходе усилителя.

Усилитель собран на печатной плате размерами 80x75 мм из двустороннего фольгированного стеклотекстолита толщиной 2…3 мм. Чертеж платы приведен на рис.2, на рис.3 показано расположение элементов.

Импульсный усилитель системы ближней радиолокации

Пунктирной линией на рис.3 обозначены места металлизации торцов, что необходимо для устранения паразитных резонансов и заземления нужных участков печатной платы. Это можно сделать с помощью металлической фольги. Транзисторы VT2. VT4 и VT5 крепятся к основанию с использованием теплопроводящей пасты. Катушки индуктивности приклеиваются к печатной плате с использованием диэлектрических прокладок, выполненных, например, из нефольгированного стеклотекстолита.

Настройка усилителя начинается с установки заданных токов покоя транзисторов VT2 и VT4 резисторами R5 и R12. Затем в качестве эквивалента нагрузки к выходу усилителя подключается резистор сопротивлением 4...6 Ом. На вход усилителя подается отрицательный импульс амплитудой 0,1...0,2 В и изменением сопротивления R7 устанавливается требуемый коэффициент усиления. Следует иметь в виду, что при сопротивлении R7 менее 100 Ом на переднем фронте импульса появляется выброс. Это обусловлено задержкой сигнала в цепи общей обратной связи. Подбором сопротивлений R19 и R20 устанавливаются пределы регулирования тока, отдаваемого генератором на VT5.

Литература

  1. Бакулев П.А., Стенин В.М. Методы и устройства селекции движущихся цепей. - М.: Радио и связь, 1986.
  2. Полупроводниковые приборы. Сверхвысокочастотные диоды: Справочник /Б.А.Наливайко и др./. - Томск МГП РАСКО. 1992.
  3. Титов А. А. Расчет схемы активной коллекторной термостабилизации и ее использование в усилителях с автоматической регулировкой потребляемого тока. - Электронная техника. Сер. СВЧ-техника. 2001. № 2. С.26.
  4. Царапкин Д.П. Генераторы СВЧ на диодах Ганна. - М.: Радио и связь, 1982.

Авторы: А.Титов, В.Пушкарев, г.Томск

Смотрите другие статьи раздела Радиолюбителю-конструктору.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Искусственная кожа для эмуляции прикосновений 15.04.2024

В мире современных технологий, где удаленность становится все более обыденной, сохранение связи и чувства близости играют важную роль. Недавние разработки немецких ученых из Саарского университета в области искусственной кожи представляют новую эру в виртуальных взаимодействиях. Немецкие исследователи из Саарского университета разработали ультратонкие пленки, которые могут передавать ощущение прикосновения на расстоянии. Эта передовая технология предоставляет новые возможности для виртуального общения, особенно для тех, кто оказался вдали от своих близких. Ультратонкие пленки, разработанные исследователями, толщиной всего 50 микрометров, могут быть интегрированы в текстильные изделия и носиться как вторая кожа. Эти пленки действуют как датчики, распознающие тактильные сигналы от мамы или папы, и как исполнительные механизмы, передающие эти движения ребенку. Прикосновения родителей к ткани активируют датчики, которые реагируют на давление и деформируют ультратонкую пленку. Эта ...>>

Кошачий унитаз Petgugu Global 15.04.2024

Забота о домашних животных часто может быть вызовом, особенно когда речь заходит о поддержании чистоты в доме. Представлено новое интересное решение стартапа Petgugu Global, которое облегчит жизнь владельцам кошек и поможет им держать свой дом в идеальной чистоте и порядке. Стартап Petgugu Global представил уникальный кошачий унитаз, способный автоматически смывать фекалии, обеспечивая чистоту и свежесть в вашем доме. Это инновационное устройство оснащено различными умными датчиками, которые следят за активностью вашего питомца в туалете и активируются для автоматической очистки после его использования. Устройство подключается к канализационной системе и обеспечивает эффективное удаление отходов без необходимости вмешательства со стороны владельца. Кроме того, унитаз имеет большой объем смываемого хранилища, что делает его идеальным для домашних, где живут несколько кошек. Кошачий унитаз Petgugu разработан для использования с водорастворимыми наполнителями и предлагает ряд доп ...>>

Привлекательность заботливых мужчин 14.04.2024

Стереотип о том, что женщины предпочитают "плохих парней", долгое время был широко распространен. Однако, недавние исследования, проведенные британскими учеными из Университета Монаша, предлагают новый взгляд на этот вопрос. Они рассмотрели, как женщины реагируют на эмоциональную ответственность и готовность помогать другим у мужчин. Результаты исследования могут изменить наше представление о том, что делает мужчин привлекательными в глазах женщин. Исследование, проведенное учеными из Университета Монаша, приводит к новым выводам о привлекательности мужчин для женщин. В рамках эксперимента женщинам показывали фотографии мужчин с краткими историями о их поведении в различных ситуациях, включая их реакцию на столкновение с бездомным человеком. Некоторые из мужчин игнорировали бездомного, в то время как другие оказывали ему помощь, например, покупая еду. Исследование показало, что мужчины, проявляющие сочувствие и доброту, оказались более привлекательными для женщин по сравнению с т ...>>

Случайная новость из Архива

Звук управляет светом 04.02.2015

В начале прошлого века советский физик Леонид Мандельштам теоретически показал, что звуковые колебания в прозрачном веществе могут рассеивать проходящий через это вещество свет. Звуковые волны вызывают локальные изменения плотности среды и как следствие, меняют показатель преломления. В результате такого рассеяния теряется часть световой энергии. Независимо от Мандельштама американский физик Леон Бриллюэн пришел к таким же результатам. В итоге взаимодействие звука и света в прозрачных средах назвали эффектом Мандельштама-Бриллюэна.

Однако мы не замечаем, чтобы громкая музыка рассеивала свет от лампочки, как, например, рассеивается свет автомобильных фар в тумане. Эффект станет заметным, только если вместо обычной лампочки взять источник монохроматического излучения - лазер. Дело в том, что луч лазера представляет собой электромагнитное излучение с одной длиной волны, которая и определяет его "цвет". У красного луча одна длина волны, у зеленого - другая.

Теперь возьмем оптоволоконную линию передачи данных. Принцип ее работы в том, что информация передается за счет изменения интенсивности светового луча, распространяющегося вдоль прозрачной стеклянной нити. Одну оптоволоконную нить можно одновременно использовать для передачи данных по сотням каналов, просто используя лучи света разной длины волны. Каждому каналу соответствует определенная длина волны лазера. Довольно похоже с передачей данных по радиоволнам, кроме одного: если мы увеличиваем мощность радиопередатчика, то увеличивается мощность сигнала и дальность его приема. Если же мы увеличиваем мощность лазера для передачи сигнала по оптоволокну, передача ухудшается - все большая часть сигнала начнет теряться из-за рассеяния Мандельштама-Бриллюэна. Поэтому существует пороговая мощность сигнала, превышать которую не имеет смысла, иначе переданный свет просто отразится обратно.

Что же сделали физики из университета Иллинойса? На тонкой оптоволоконной нити они закрепили маленькую стеклянную сферу. Такая конструкция называется кольцевым оптическим резонатором. Луч лазера из оптоволоконной нити попадает в резонатор и за счет многократного внутреннего отражения остается в нем, как в ловушке. Ключевым моментом в эксперименте стал второй лазерный луч, с частотой, отличающейся от первоначальной на определенную величину. Разница в частотах лазерных лучей соответствовала частоте акустических колебаний материала сферы. Это и сделало систему из оптоволокна и резонатора прозрачной для первого луча.

Что самое удивительное, такая система оказалась прозрачна для лучей только с одной стороны. Получилось подобие оптического турникета - свет проходит с одной стороны, и не может пройти с другой. Возникает такое интересное свойство из-за сложного взаимодействия двух световых лучей и акустических волн в материале - эффекте рассеяния Мандельштама-Бриллюэна. Только в данном случае, вместо того чтобы препятствовать прохождению луча по волокну, он, наоборот, обеспечил ему свободный коридор.

Открытие таких свойств позволит создавать миниатюрные оптические изоляторы и циркулярторы, которые нужны для оптоволоконных систем и в перспективе - для квантовых компьютеров. Сейчас действие этих устройств основано на магнитооптическом эффекте Фарадея, и для пропускания света только в одну сторону применяются магнитные поля и материалы. Избавиться от лишних магнитных полей как раз поможет сделанное открытие. Кроме того, его можно использовать для изменения групповой скорости светового луча - физики называют это "быстрым" и "медленным" светом, он нужен для хранения квантовой информации.

Другие интересные новости:

▪ Sony SDM-HS73P - новый монитор с технологией Onyx-black

▪ Смартфон Oppo Reno6 Lite

▪ Робот-паук

▪ Искусственный лист на основе вольфрама

▪ RPS-30/45/65 - компактные медицинские источники питания

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Электрические счетчики. Подборка статей

▪ статья Социальный заказ. Крылатое выражение

▪ статья Где больше всего диких верблюдов? Подробный ответ

▪ статья Электромонтер телефонной связи при обслуживании координатных АТС. Типовая инструкция по охране труда

▪ статья Частотомер - цифровая шкала. Энциклопедия радиоэлектроники и электротехники

▪ статья Угадывание слова из книги. Секрет фокуса

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:





All languages of this page

Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2024