Menu Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Входной модуль микшерного пульта. Энциклопедия радиоэлектроники и электротехники

Бесплатная техническая библиотека

Энциклопедия радиоэлектроники и электротехники / Аудиотехника

 Комментарии к статье

В статье предложены некоторые варианты входного модуля для любительского микшерного пульта. Описание этой конструкции, вызвавшей интерес наших читателей, было опубликовано в журнале "Радио", 2003, № 2, 3. Автор сконструировал еще несколько модулей, которые могут использоваться в составе этого пульта.

При налаживании входных блоков для модульного пульта [1, 2] оказалось, что разные экземпляры микросхем К548УН1А имеют довольно большой разброс параметров и требуют настройки. Обычно на выходах двух усилителей микросхемы постоянное напряжение заметно отличается и ограничение одной полуволны сигнала наступает значительно раньше, чем другой. Из-за этого уменьшается запас по перегрузке, особенно при низком напряжении питания. Приходится заниматься настройкой каждого микрофонного усилителя подбором резисторов в цепи ООС. При этом в дифференциальном усилителе неизбежно нарушается симметричность входа, т. е. мы лишаемся одного из основных достоинств такого микрофонного усилителя. К тому же ток, потребляемый только одной микросхемой, достигает 15 мА, что много для многоканального пульта, если питать его от батарей. В модульной конструкции пульта блоки легко заменяются, что позволяет по необходимости их совершенствовать.

Предлагается еще один вариант входного универсального усилителя с транзисторным микрофонным усилителем (МУ) и линейным усилителем (ЛУ) на ОУ широкого применения. Применять такие ОУ в микрофонном усилителе обычно не удается, поскольку они не могут обеспечить приемлемые шумовые характеристики. Приходится ставить на входе малошумящие транзисторы и даже выносить транзисторный каскад к микрофону, передавая по проводам уже усиленный сигнал [3]. В последнем варианте возникают сложности, связанные с необходимостью подать напряжение на транзисторный каскад и при этом сохранить симметричность входа.

Эти проблемы легко решить, если вспомнить, как обычно подается фантомное питание на вход микрофонного усилителя. Ведь резисторы, через которые фантомное напряжение питания микрофона подключено одновременно к обоим входам дифференциального операционного усилителя (через разделительные конденсаторы), могут играть роль коллекторной нагрузки транзисторов еще одного предварительного дифференциального усилителя. Этот предварительный усилитель можно размещать на той же плате и вынести к микрофону, так как питание его уже есть (включено вместо фантомного), симметрия входа сохранена. Сигнал с коллекторов транзисторов подается по двум проводам микрофонного кабеля, а оплетка служит общим проводом. Достаточно подать небольшое напряжение смещения с коллекторов на базы транзисторов, и получается очень неплохой микрофонный усилитель. Операционный же усилитель может использоваться как линейный. Весь модуль потребляет ток не более 10 мА. Два варианта схемы такого входного усилителя показаны на рис. 1.

Входной модуль микшерного пульта
(нажмите для увеличения)

Отличаются варианты только выходами. В первом из вариантов (рис. 1,а) есть общий регулятор выходного уровня и сигнал подается сразу на обе выходные линейки пульта, во втором (рис. 1,б) - на выходе установлен регулятор "Панорама". Два регулятора просто не размещаются на передней панели. Да и необходимости в этом нет: для стереофонического сигнала есть свой модуль линейного усилителя, у которого уровень сигнала и тембр регулируются сразу одновременно в обоих каналах (на микросхеме TDA1524A или улучшенной - LM1036) и регулятор "Панорама" предусмотрен. Поэтому и печатная плата (рис. 2) предлагается только для первого варианта.

Входной модуль микшерного пульта
(нажмите для увеличения)

Линейный усилитель (DA1.1) собран на счетверенном ОУ TL074 (TL084, КР1401УД4). Остальные ОУ используются в регуляторе тембра (DA1.2), индикаторе перегрузки (DA1.3) и в выходном каскаде (DA1.4). Усиление изменяется примерно в 10 раз переменным резистором R16. Расчет простого дифференциального усилителя с регулировкой усиления одним резистором достаточно прост [4]:

КУс = (R11+R12)/R8+2(R11xR12)/ /(R8xRp);

Rp= R16+R15, R8 = R9, R11 - R12 = R13 = R14= 10 кОм.

Сопротивление Rp изменяется в интервале 1...48 кОм. Соответственно усиление регулируется в пределах 5,6...0,6. Конечно, можно выбрать и другой диапазон регулировки. Обращаем внимание на то, что многие отечественные переменные резисторы могут иметь заметное остаточное сопротивление между выводами подвижного контакта и крайних выводов резистора при соответствующих крайних положениях регулятора. Конечно, диапазон регулирования при этом сокращается. Необходимо помнить, что напряжение питания микросхемы всего 12 В и напряжение неискаженного выходного сигнала немного превышает 2,5 В (3 В при Кг - 1 %). Для получения нормированного выходного значения 250 мВ на вход можно подавать сигнал с напряжением 45...450 мВ. Для сигналов с большим напряжением придется пользоваться выходным регулятором усиления R29.

Основное усиление дает МУ. В нем можно применить малошумящие транзисторы (например, КТ3102Е), подобрав пару с одинаковыми параметрами, но проще поставить транзисторные сборки КР159НТ1В либо КР159НТ1Е. Начальное усиление МУ задается выбором сопротивления резистора R7. Если наибольшей чувствительности модуля соответствует сигнал с уровнем 1 мВ, то общее максимальное усиление (Кус лу = 5,6) должно достигать 250, а МУ - около 50.

Измерения усиления МУ на транзисторах с h21Э = 220 показали, что при R7 = 560 Ом Кус му достигает 250, при 10 кОм - 110, при 24 кОм - 64, при 470 кОм - 4,6. Кстати, подобное изменение параметра достаточно для несложных автоматических регуляторов уровня.

Входные резисторы R1, R2 определяют входное сопротивление МУ и позволяют при необходимости удалить соединение их общей точки с общим проводом, чтобы подать на нее фантомное питание. Конденсаторы С2, C3 помогают уменьшить нежелательные высокочастотные помехи. Переключатель S1 разделяет микрофонный и линейный усилители, поэтому ничто не мешает выполнить МУ в виде выносной платы, размещаемой внутри корпуса динамического микрофона.

Лабораторные измерения параметров нескольких входных модулей (включались в тракт поочередно по одной линейке) показали, что при наибольшем усилении уровень интегральных шумов на выходе пульта составлял -62...-65 дБ по отношению к нормированному значению. При этом коэффициент гармоник Кг составлял менее 0,1 %. Увеличение уровня входного сигнала приводило к росту нелинейных искажений. Так, при Uвх = 6...7 мВ уровень Кг достигал 0,3 %, а при Uвх = 16 мВ - 1 %. Из-за низкого напряжения питания перегрузочная способность МУ невелика, но для динамических микрофонов она вполне достаточна в большинстве случаев.

Все отверстия на лицевой панели модуля и места крепления платы полностью совпадают с модулем, описание которого приводилось ранее [2]. На входе установлен разъем Х1 JACK 6,3. К входу с помощью переключателя S1 подключается либо микрофонный, либо линейный усилитель.

Регуляторы тембра позволяют изменять усиление на частотах 50 Гц и 10 кГц не менее чем на ±12 дБ. Чувствительность компаратора, регистрирующего превышение амплитудой сигнала любой полярности заданного значения ("Перегрузка"), можно изменять подбором резистора R24.

Этот модуль можно использовать как независимый одноканальный пульт с линейным выходом. Достаточно поместить его в корпус и подать питание от сетевого адаптера. При включении модуля в пульт, имеющий общий стабилизатор, излишними становятся стабилизатор DA2 и защитный диод VD5 (см. рис. 1,6). Вместо них на плате впаивают перемычки.

Если применять регулировочные резисторы СПЗ-33-32, то их можно устанавливать прямо на плате. Тогда уголки крепления платы к лицевой панели не очень нужны. Но без них не обойтись при применении переменных резисторов СПЗ-4 или импортных, которые придется крепить на лицевой панели и соединять с платой проводами.

Нет необходимости приводить подробное описание микрофонного модуля. От универсальной линейки он отличается только отсутствием переключателя S1 (нет линейного входа) и установкой вместо разъема JACK разъема CANNON, применяемого во всех профессиональных микрофонах.

Литература

  1. Кузнецов Э. Входные усилители с симметричным входом. - Радио, 2002, № 12, с. 16, 17.
  2. Кузнецов Э. Любительский микшерный пульт. - Радио, 2003, №2, с. 12-15; № 3, с. 10-12.
  3. Предварительные УНЧ. Любительские схемы. Радиобиблиотечка. Выпуск 9. - М.: РадиоСофт, 2001.
  4. Гутников В. С. Интегральная электроника в измерительных устройствах. - Л.: Энергоатомиздат, 1988.

Автор: Э.Кузнецов, г. Москва

Смотрите другие статьи раздела Аудиотехника.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Ранняя Вселенная не была ледяной 28.11.2025

Понимание того, как формировались первые структуры во Вселенной, требует взгляда в эпохи, в которых не существовало ни звезд, ни галактик, ни привычных нам источников света. Научные группы по всему миру пытаются восстановить картину тех времен при помощи слабейших радиосигналов, оставшихся от водорода, который наполнял космос вскоре после Большого взрыва. Новые результаты, полученные на радиотелескопе Murchison Widefield Array в Австралии, неожиданным образом меняют представление об этих ранних этапах. Сразу после Большого взрыва, произошедшего около 13,8 миллиарда лет назад, пространство стремительно расширялось и остывало. Через несколько сотен тысяч лет образовался нейтральный водород, и началась так называемая эпоха тьмы, когда Вселенная была лишена источников излучения. Лишь значительно позже гравитация собрала газ в плотные области, где зародились первые звезды и ранние черные дыры, а их интенсивное излучение привело к реионизации водорода и окончательному появлению света. ...>>

Устройство идеальной очистки воздуха 28.11.2025

Качество воздуха в закрытых помещениях давно стало важнейшим фактором здоровья, особенно в городах, где люди проводят подавляющую часть времени внутри зданий. В последние годы исследователи уделяют все больше внимания именно тем технологиям, которые способны задерживать или разрушать вредоносные частицы до того, как они попадут в дыхательные пути человека. Одним из таких новаторских направлений стала разработка инженеров Университета Британской Колумбии в Оканагане, которые предложили принципиально иной подход к очистке воздуха в присутствии людей. По словам профессора Школы инженерии доктора Санни Ли, традиционные персонализированные вентиляционные системы действительно могут улучшать качество воздуха вокруг пользователя, однако их принцип работы имеет ряд ограничений. Человек вынужден находиться в строго определенной зоне, а одновременное использование одной системы несколькими людьми снижает эффективность. Кроме того, непрерывный поток сухого очищенного воздуха способен вызывать ...>>

Ощущение текстуры через экран гаджета 27.11.2025

Гаджеты научились передавать изображение и звук с впечатляющей реалистичностью, но тактильные ощущения по-прежнему остаются недоступными для полноценной цифровой симуляции. Именно поэтому инженеры и исследователи во всем мире стремятся создать технологии, которые позволят "почувствовать" виртуальный объект так же естественно, как и настоящий. Новая разработка специалистов Северо-Западного университета США стала одним из самых заметных шагов в этом направлении. Возглавлявшая исследование аспирантка Сильвия Тан (Sylvia Tan) подчеркивает, что прикосновение остается последним фундаментальным чувственным каналом, для которого пока нет зрелого цифрового аналога. По ее словам, если визуальные и звуковые интерфейсы давно обеспечивают высокую степень реалистичности, то осязание лишь начинает приближаться к этому уровню. В недавней публикации в журнале Science Advances Тан отмечает, что новая технология способна изменить само представление о взаимодействии человека с устройствами. Разработ ...>>

Случайная новость из Архива

2016 год будет на секунду дольше 14.07.2016

2016 год и так високосный, так теперь он еще будет дольше на одну секунду. Причем произошло это в том числе из-за нагрева океанических вод.

Так как Земля слегка замедляет свое вращение, международные хранители времени время от времени прибавляют к году дополнительную секунду или две, чтобы соответствовать скорости вращения Земли и точным атомным часам. Но в этом году, по словам сотрудника Морской обсерватории США Джоффа Честера, дело в другом. Взаимодействие приливов с Луной, а также более теплые и плотные океанические воды становятся причиной того, что Земля все медленнее проходит свой суточный оборот.

31 декабря 2016 года после 23:59:59 будет не 00:00:00, а еще одна секунда, 23:59:60. Так что до Нового Года теперь на одну секунду дольше, учтите это во время новогодних праздников и тостов.

Другие интересные новости:

▪ Психическое здоровье фокусников

▪ Новые силовые низковольтные МОП-транзисторы для автоэлектроники

▪ Создание тяжелых химических элементов в космосе

▪ Создана упругая форма углерода

▪ Сердцу вредит низкая гравитация в космосе

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Часы, таймеры, реле, коммутаторы нагрузки. Подборка статей

▪ статья Нормативно-технические и организационные основы БЖД. Основы безопасной жизнедеятельности

▪ статья Чем объясняется близость слов швейцар и швейцарец? Подробный ответ

▪ статья Эксплуатация сварочного аппарата. Типовая инструкция по охране труда

▪ статья Микpоконтpоллеp PIC16C84. Краткое описание. Энциклопедия радиоэлектроники и электротехники

▪ статья Воздушные линии электропередачи напряжением выше 1 кВ. Провода и грозозащитные тросы. Энциклопедия радиоэлектроники и электротехники

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:





Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2025