Menu English Ukrainian Russian Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Программируемый синтезатор частоты. Энциклопедия радиоэлектроники и электротехники

Бесплатная техническая библиотека

Энциклопедия радиоэлектроники и электротехники / Применение микросхем

Комментарии к статье Комментарии к статье

Вниманию читателей предлагается описание синтезатора частоты до 950 МГц, который может найти применение в качестве генераторов фиксированной или качающейся частоты в измерительной технике, а также в приемной и приемно-передающей аппаратуре. Использование специализированных микросхем намного упрощает изготовление устройства и облегчает работу с ним.

Синтезатор частоты построен на основе двух специализированных микросхем - контроллера КР1830ВЕ751 и однокристального синтезатора частоты.

КФ1015ПЛ2. Устройство совместно с генератором, управляемым напряжением (ГУН), может быть использовано как:

  • генератор частоты в диапазоне 50...950 МГц;
  • генератор качающейся частоты;
  • генератор в радиоприемных и приемно-передающих устройствах.

Программируемый контроллер позволяет производить:

  • непосредственный набор частоты 50...950 МГц и ее индикацию с формированием кода на синтезатор;
  • выбор шага сетки частоты -100 Гц... 1 МГц;
  • выбор коэффициента деления опорного генератора микросхемы КФ1015ПЛ2 10, 20, 40, 100, 200, 400, 800, 1000;
  • набор промежуточной частоты (ПЧ) выше или ниже относительно индицируемой частоты и кратно сетке частот - 100 Гц...900 МГц;
  • набор расстройки частоты передатчика выше или ниже частоты приема кратно сетке частот - 100 Гц...900 МГц;
  • выбор начальной и конечной частот для режима сканирования по частоте - 50...950 МГц;
  • выбор начальной и конечной "строк" памяти для режима сканирования по встроенной памяти частот - 0...9 (0...99 с внешней памятью).

Емкость памяти значений частоты (число "строк" в памяти) - 10 (с внешней памятью - 100).

Время формирования кода новой частоты - 28 мс.

При стабилизированном напряжении питания 5 В устройство потребляет ток 12 мА, с внешней памятью - 14 мА. В дежурном режиме (режим микропотребления) потребляемый ток уменьшается до 15 мкА.

Устройство состоит из контроллера синтезатора, клавиатуры, блока индикации, синтезатора частоты, а также стабилизатора напряжения источника питания.

Назначение выводов микросхемы КР1830ВЕ751 приведено в табл. 1.

N вывода Обозначение Назначение
1-8 Р1.0-Р1.7 Линии опроса клавиатуры
9 RESET Сброс
10 РЗ.0 Данные на синтезатор и ИЖК
11 РЗ.1 Синхронизация данных на синтезатор и ИЖК
12 РЗ.2 Строб записи данных на синтезатор
13 РЗ.3 Управление внешней памятью
14 РЗ.4 Управление ИЖК
15 РЗ.5 Управление включением передатчика
16 РЗ.6 Строб записи внешней памяти
17 РЗ.7 Строб чтения внешней памяти
18 XTAL1 Цепь кварцевого резонатора
19 XTAL2 Цепь кварцевого резонатора
20 Общий вывод
21-23 Р2.0-Р2.2 Адресные выходы (к внешней памяти)
24 Р2.3 Включение внешней памяти
25-27 Р2.4-Р2.6 Линии сканирования клавиатуры
30 ALE Строб записи адреса внешней памяти
31 ЕА Подключить к Uп1
32-39 Р0.7-РО.О Вход/Выход адреса и данных внешней памяти
40 Uп Напряжение питания +5 В

Электрическая схема включения контроллера приведена на рис. 1. Основное его назначение - формирование кода для микросхемы синтезатора частоты.

Программируемый синтезатор частоты
Рис.1 (нажмите для увеличения)

Выдача кода на синтезатор осуществляется каждый раз после изменения следующих параметров:

  • текущей частоты;
  • шага сетки (Сетка); - коэффициента деления опорного делителя (КД);
  • промежуточной частоты (ПЧ);
  • расстройки частоты (Расстр.).

Для случая использования расширенной памяти вывод РЗ.3 микросхемы DD1 (опрашивается контроллером один раз при первом включении питания) соединен с общим проводом и содержит дополнительный регистр DD2 и микросхему памяти DD3. Без внешней памяти контроллер может запомнить 10 установок численных значений частоты (10 "строк"). В этом случае микросхемы

DD2, DD3 исключаются, а выход РЗ.3 DD1 должен быть отсоединен от общей шины. Питание регистра и выбор микросхемы памяти осуществляются только на время обращения к внешней памяти (по сигналу с вывода Р2.3 контроллера).

Для управления контроллером используется клавиатура, клавиши которой имеют назначение согласно табл. 2.

Шины Р2.6 Р2.5 Р2.4
Р1.0 "2" "Н.СК." "Пр./Пер."
Р1.1 "3" "К.СК." "Скан."
Р1.2 "4" "Tek" "Бл. Расстр."
Р1.3 "5" "Память" "Реж. Пер."
Р1.4 "6" "+/-" "Расстр."
Р1.5 "7" "Забой" "ПЧ"
Р1.6 "8" "0" "КД"
Р1.7 "9" "1" "Сетка"

Программируемый синтезатор частоты
Рис.2 (нажмите для увеличения)

Электрическая схема клавиатуры показана на рис. 2, а диаграмма ее работы - на рис. 3,а. Время защиты от дребезга контактов - 3 мс. Микросхема DD1 используется для ввода информации от нескольких узлов синтезатора: от источника питания- о переходе на режим микропотребления; от микросхемы синтезатора частоты - о переходе на новую частоту при гарантированной установке старой частоты; от шумоподавителя приемника - о временной остановке сканирования на 5 с. Все активные уровни - низкие. Длительность импульса сигнала "микропотребление" должна быть не менее 50 мс.

Программируемый синтезатор частоты
Рис.3

Визуализация состояния контроллера осуществляется с помощью индикатора на жидких кристаллах (ИЖК), имеющего восемь знакомест и двух специальных знаков, например, "Е" и "М".

Панель индикации содержит:

  • индикатор частоты (шесть знакомест) - для вывода различной информации;
  • индикатор номера "строки" памяти (два знакоместа) - для визуализации номера рабочей "строки" памяти;
  • индикатор "направления" (знак "-")
  • для визуализации направления сканирования, знака промежуточной частоты и знака расстройки передатчика;
  • индикатора "ошибки" (знак "Е") - для визуализации ошибки при вычислении кода синтезатора частоты;
  • индикатор "блокировка расстройки" (знак "М") - для визуализации включения или выключения расстройки.

Электрическая схема индикатора на ИЖК показана на рис. 4, а диаграмма сигналов управления индикатором - на рис. 3,б.

Программируемый синтезатор частоты
Рис.4 (нажмите для увеличения)

Управление работой индикатора осуществляется фазовым методом с формированием величины напряжения, равной половине напряжения питания для общих электродов: A, F, -, М; Е, G, В; С, D, Н. Любой сегмент активизируется при подаче на общий электрод и электрод соответствующей цифры переключаемых инверсно уровней напряжения и не активизируется при действующих синфазно. В интервалы времени Т1, Т2, Т3 напряжение на сегменты подается одной полярности, а в интервалы Т4, Т5, Т6 - другой. Во время интервала Т7 на всех электродах - низкий уровень и происходит выключение индикации. Сегменты всех восьми цифр управляются параллельно. Регистры DD1 - DD4 преобразуют последовательный код сигнала контроллера в трехуровневый. Рабочая частота переключения индикатора - 50 Гц, скважность - 3. Применение точных резисторов (с допуском ±1 %) практически исключает протекание постоянной составляющей тока от несимметрии управляющего напряжения.

Потребляемый ток - 60 мкА.

Авторы: В. Семенов, В. Шлектарев, г. Пущино Московской обл.; Публикация: Н. Большаков, rf.atnn.ru

Смотрите другие статьи раздела Применение микросхем.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Использование Apple Vision Pro во время операций 16.03.2024

Медицинская команда больницы Кромвеля в Лондоне впервые применила Apple Vision Pro в ходе двух операций на позвоночнике. Это событие подтверждает потенциал гарнитуры в качестве медицинского инструмента, изменяющего подход к хирургической практике. Хотя сами врачи не использовали Vision Pro, операционная медсестра работала с виртуальной реальностью, используя очки во время подготовки и выполнения процедур. Гарнитура позволила просматривать виртуальные экраны в операционной, выбирать инструменты и следить за ходом операции. Программное обеспечение, разработанное компанией eXeX, специализирующейся на создании приложений на основе искусственного интеллекта для хирургии, существенно улучшило процесс оказания медицинской помощи пациентам. Использование Apple Vision Pro открывает новые возможности для разработки приложений в сфере здравоохранения, таких как клиническое образование, планирование операций, обучение и медицинская визуализация. Внедрение Apple Vision Pro в медицинскую пр ...>>

Хранение углерода в Северное море 16.03.2024

Министр энергетики Норвегии Терье Осланд объявил о запуске проекта Longship, нацеленного на создание центрального хранилища углекислого газа в Северном море. Этот амбициозный проект оценивается в $2,6 млрд и направлен на применение технологии CCS (углеродного захвата и хранения) для смягчения воздействия климатических изменений. Норвегия уже имеет опыт в области CCS благодаря успешным проектам Sleipner и Snohvit, и сейчас стремится увеличить объем углерода, запечатываемого под морским дном. План Longship предусматривает создание мощности по захвату и хранению 1,5 млн. тонн углерода ежегодно в течение 25 лет. Несмотря на позитивные перспективы, существуют опасения по поводу долгосрочных последствий такого хранения. Однако сторонники проекта утверждают, что морское хранение углерода имеет ряд преимуществ, включая минимальное воздействие на окружающую среду. Проект Longship осуществляется при участии компаний Equinor, Shell и TotalEnergies через совместное предприятие Northern Li ...>>

Выращены мини-органы из амниотической жидкости человека 15.03.2024

Международная команда ученых под руководством профессора Фань Сюлиня из Университета Чжэцзян разработала уникальный способ выращивания мини-органов из клеток, обнаруженных в амниотической жидкости человека. Этот значительный прорыв в медицине может привести к улучшению диагностики и лечения врожденных заболеваний. Органоиды, представляющие собой трехмерные клеточные структуры, имитирующие органы в меньшем масштабе, были выращены из клеток легких, почек и тонкого кишечника, найденных в амниотической жидкости. Этот метод открывает новые возможности для изучения различных состояний плода и может стать ключом к ранней диагностике и лечению врожденных дефектов. Хотя пока не проводились попытки использования этого метода в лечении, ученые надеются, что их исследования в будущем помогут бороться с серьезными врожденными заболеваниями, которые затрагивают миллионы новорожденных ежегодно. Этот прорыв может изменить практику медицинских вмешательств, позволяя диагностировать и лечить врожд ...>>

Случайная новость из Архива

Создана самая высокая ракета 18.08.2021

Инженеры известной космической компании SpaceX успешно произвели установку на ракету-носитель Super Heavy второй ступени - космического корабля Starship SN20. В результате этой операции получилась конструкция, высотой 120 метров (394 футов), что выше ракеты эпохи программы Аполлон Saturn V (362,9 фута) и выше будущей ракеты SLS в ее максимальной конфигурации Block 2 (365,1 фута). Другими словами, компании SpaceX удалось построить самую высокую в истории ракету, которой предназначено покинуть поверхность Земли и отправить свой груз в космическое пространство.

Ракета-носитель Super Heavy BN4 была установлена на стартовой площадке 3 августа, после установки на нее всех 29 реактивных двигателей Raptor. Верхняя и нижняя части ракеты имеют одинаковый диаметр (9 метров), а ее высота составляет 70 метров. Добавим к этому еще 50 метров космического корабля Starship, и получим грандиозную 120-метровую конструкцию, устремленную в небеса.

Руководство компании SpaceX планирует произвести запуск пары Super Heavy BN4 - Starship SN20 позже в этом году. Запуск миссии будет проходить по следующему сценарию - носитель Super Heavy BN4 будет работать в течение 169 секунд прежде, чем от него отделится вторая ступень - Starship SN20. После этого отработанная ракета-носитель упадет в Мексиканском заливе приблизительно в 30 километрах от места запуска. Космический корабль Starship, тем временем, включит свои двигатели, выйдет на околоземную орбиту на короткое время и совершит обратный вход в атмосферу. После спуска космический корабль приводнится в Тихом океане неподалеку от гавайского острова Кауаи.

После полного завершения сооружения, ракета-носитель Super Heavy BN4 станет самой мощной ракетой-носителем, способной к подъему на орбиту 150 тонн груза. Двигатели ракеты работают на смеси холодного жидкого метана и жидкого кислорода, совместная работа всех 29 двигателей во время старта способна обеспечить тягу, силой в 72 меганьютона.

Другие интересные новости:

▪ Охлаждение электроники прыгающими капельками

▪ Гибрид трамвая и автобуса

▪ Оптоволоконное коммутационное оборудование сверхвысокой плотности

▪ Солнечная батарея на стекле

▪ Кровь акул против онкологии

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Справочные материалы. Подборка статей

▪ статья Мэрилин Монро. Знаменитые афоризмы

▪ статья За сколько лет Александр Македонский создал крупнейшую державу Древнего мира? Подробный ответ

▪ статья Машинист холодильной установки. Типовая инструкция по охране труда

▪ статья Универсальный пробник-индикатор. Энциклопедия радиоэлектроники и электротехники

▪ статья Переговорное устройство - пульт оперативной связи. Энциклопедия радиоэлектроники и электротехники

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:





All languages of this page

Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2024