Menu Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Сетевая фотовспышка. Энциклопедия радиоэлектроники и электротехники

Бесплатная техническая библиотека

Энциклопедия радиоэлектроники и электротехники / Освещение

Комментарии к статье Комментарии к статье

Сетевые лампы-вспышки для фотосъемки бывают двух видов - с накопительным конденсатором и без него. Наибольшее распространение получили импульсные источники света с накопительным конденсатором, так как они обеспечивают надежность срабатывания и постоянство энергии вспышки. Вместе с тем у источников света без накопительного конденсатора значительно меньше необходимый интервал времени между вспышками (определяется в основном мощностью рассеяния импульсной лампы), габариты и масса, а зачастую и стоимость. Поэтому фотовспышки без накопительного конденсатора вызывают постоянный интерес у фотолюбителей.

Несколько вариантов сетевой фотовспышки без накопительного конденсатора были описаны в журнале "Радио" [1]. Фотовспышка на тиристоре В. Четверика не может обеспечить постоянства энергии вспышки и надежности ее срабатывания по той причине, что момент вспышки не всегда совпадает с максимальным напряжением положительного полупериода сети на выходах импульсной лампы. Зажигания импульсной лампы вообще не произойдет, если синхроконтакты фотоаппарата замкнуты в момент перехода сетевого напряжения через "нуль" или в течение отрицательной полуволны сетевого напряжения на выводах импульсной лампы. Вспышки не будет и в том случае, когда напряжение сети не достигло порога зажигания импульсной лампы к моменту замыкания синхроконтактов фотоаппарата.

В источнике света на тиратронах Б. Свойского отсутствуют отмеченные недостатки, но он построен на старой элементной базе - тиратронах, неоновой лампе - и имеет довольно большие габариты.

Четкое срабатывание импульсного источника света без накопительного конденсатора и постоянство энергии вспышки легко обеспечить введением в него узла, синхронизирующего момент зажигания импульсной лампы с максимальным значением положительной полуволны сетевого напряжения на ее выводах, даже при произвольном замыкании синхроконтактов. Таким узлом может быть одновибратор, состоящий из дифференцирующей цепи и D-триггера [2].

На рис. 1 представлена принципиальная электрическая схема сетевой фотовспышки без накопительного конденсатора, построенной на основе синхронизированного одновибратора. При замыкании синхроконтактов SF1 (они находятся внутри фотоаппарата, но для удобства рассмотрения работы устройства показаны здесь) происходит зарядка конденсатора С2. После размыкания синхроконтактов конденсатор С2 разряжается через резисторы R5 и R6 и на информационном входе D-триггера формируется пусковой импульс. С делителя напряжения R2R3 на вход С триггера поступают тактовые импульсы, представляющие собой положительные полуволны синусоидального сетевого напряжения с амплитудой около 9 В и частотой 50 Гц (рис. 2). В результате триггер переключается либо немедленно, если пусковой импульс совпадает с тактовым, либо с задержкой на период тактовых импульсов.

Сетевая фотовспышка
Рис. 1 (нажмите для увеличения)

Выходной импульс с триггера поступает на управляющий электрод тринистора VS1. Через открывшийся тринистор и первичную обмотку импульсного трансформатора Т1 разряжается конденсатор C3. Во вторичной повышающей обмотке трансформатора возникает высоковольтный импульс напряжения, приводящий к ионизации газа внутри баллона импульсной лампы EL1, что вызывает ее вспышку. Резистор R1 ограничивает ток через импульсную лампу EL1.

Сетевая фотовспышка

Для изготовления фотовспышки удобно использовать набор № 1 запасных деталей для фотовспышек "Луч-70" заводского изготовления (из него используют корпус, импульсную лампу с отражателем и шнур для подключения к синхроконтактам фотоаппарата). Все детали устройства, включая и импульсную лампу с отражателем, смонтированы на печатной плате. Плата прикреплена к отражателю сзади. Все детали размещены по краям платы.

Резистор R1 изготовлен из нихромовой проволоки диаметром 0,5 мм, намотанной на резисторе ВС-0,5 любого сопротивления, число витков - 15-20. Импульсный трансформатор Т1 намотан на кольцевом магнитопроводе К 10Х6Х3 из феррита 3000НМ. Обмотка I содержит 3 витка провода ПЭВ-2 0,31, а обмотка II - 600 витков провода ПЭЛШО 0,1. Следует позаботиться о надежной изоляции между обмотками.

При распайке кабеля, соединяющего лампу-вспышку с фотоаппаратом, необходимо, чтобы внешний вывод разъема синхроконтактов был соединен с правым по схеме контактом пары SF1.

Правильно собранная вспышка налаживания не требует.

В лампе-вспышке, о которой рассказывает статья В. Калашника, синхроконтакты SF1 находятся под напряжением сети. Особенно опасен левый по схеме вывод пары синхроконтактов, поскольку поражающий ток от него практически ничем не ограничен (ток от правого вывода ограничен большим сопротивлением резистора R5). Вот почему подобную вспышку можно использовать лишь в фотоаппаратах, у которых синхроконтакты не соединены электрически с корпусом.

При этом редакция рекомендует, с целью повышения электробезопасности, дополнить вспышку устройством, позволяющим включать сетевую вилку в розетку так, чтобы нижний по схеме сетевой провод находился под нулевым напряжением относительно "земли".

Это устройство - указатель фазного провода сети,- состоящее из последовательно включенных резистора и неоновой лампы, надо смонтировать в сетевой вилке лампы. Корпусом вилки может служить пластмассовая банка с крышкой из-под крема. На дне ее крепят штыри, а неоновую лампу устанавливают со стороны крышки. Свободный вывод резистора (МЛТ-0,125-300 кОм) припаивают к верхнему но схеме сетевому выводу лампы-вспышки, а свободный вывод лампы (ТН-0,2) - к кольцу из медной или латунной фольги, приклеенному к наружной поверхности корпуса вилки.

При включении лампы в сеть вилку берут в руку так, чтобы пальцы касались кольца, и вставляют в розетку. Если неоновая лампа зажглась, включение считают правильным, если же нет, вилку надо вынуть, повернуть на 180° и снова вставить в розетку - лампа должна загореться. При этом положении вилки работа с лампой-вспышкой наиболее безопасна. Только теперь можно вставить штеккер соединительного кабеля в гнездо синхроконтактов фотоаппарата.

В заключение отметим, что указанные выше меры ни в коем случае не освобождают от выполнения всех правил предосторожности при обращении с электроустановками.

Одновременно предлагаем нашим читателям подумать и предложить для публикации в журнале варианты сетевой фотовспышки, обладающей всеми полезными качествами описанной здесь, но с полной "развязкой" от сети обоих выводов синхроконтактов.

Литература

  1. Лампы-вспышки (подборка статей).- Радио, 1975,№ 2, с. 46-48.
  2. Ч. Нерот. Синхронизированный одновибратор из дифференцирующей цепочки и триггера.- Электроника, 1977, № 15, с. 69, 70.

Автор: В. Калашник, г. Георгиу-Деж Воронежской обл.; Публикация: Н. Большаков, rf.atnn.ru

Смотрите другие статьи раздела Освещение.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Питомцы как стимулятор разума 06.10.2025

Помимо эмоциональной поддержки, домашние питомцы могут оказывать заметное воздействие на когнитивные процессы, особенно у пожилых людей. Новое масштабное исследование показало, что общение с кошками и собаками не просто улучшает настроение - оно действительно способствует замедлению возрастного снижения умственных способностей. Работа проводилась в рамках проекта Survey of Health, Ageing and Retirement in Europe (SHARE), охватывающего период с 2004 по 2022 год. В исследовании приняли участие тысячи европейцев старше 50 лет. Анализ показал, что владельцы домашних животных демонстрируют более устойчивые когнитивные функции по сравнению с теми, кто не держит питомцев. Особенно выражен эффект оказался у владельцев кошек и собак. Согласно данным ученых, владельцы собак дольше сохраняют хорошую память, в то время как хозяева кошек медленнее теряют способность к быстрому речевому взаимодействию. Исследователи связывают это с тем, что ежедневное взаимодействие с животными требует внимани ...>>

Мини-ПК ExpertCenter PN54-S1 06.10.2025

Компания ASUSTeK Computer презентовала новый мини-компьютер ASUS ExpertCenter PN54-S1. Устройство ориентировано на пользователей, которым важно сочетание производительности, энергоэффективности и универсальности - от офисных задач до мультимедийных проектов. В основе ExpertCenter PN54-S1 лежит современная аппаратная платформа AMD Hawk Point, использующая архитектуру Zen 4. Это поколение чипов отличается улучшенным управлением энергопотреблением и повышенной вычислительной мощностью. Новинка доступна в конфигурациях с процессорами Ryzen 7260, Ryzen 5220 и Ryzen 5210, представленных AMD в начале 2025 года. Таким образом, устройство охватывает широкий диапазон задач - от базовых офисных до ресурсоемких вычислений. Корпус мини-ПК выполнен из прочного алюминия и имеет размеры 130&#215;130&#215;34 мм, что делает его практически незаметным на рабочем столе или за монитором. Несмотря на компактность, внутренняя компоновка позволяет установить два модуля оперативной памяти SO-DIMM ...>>

Глазные капли, возвращающие молодость зрению 05.10.2025

С возрастом человеческий глаз постепенно теряет способность четко видеть на близком расстоянии - развивается пресбиопия, или возрастная дальнозоркость. Этот естественный процесс связан с утратой эластичности хрусталика и ослаблением цилиарной мышцы, отвечающей за фокусировку. Миллионы людей по всему миру сталкиваются с необходимостью носить очки для чтения или прибегают к хирургическим методам коррекции. Однако исследователи из Центра передовых исследований пресбиопии в Буэнос-Айресе представили решение, которое может стать удобной и неинвазивной альтернативой - специальные глазные капли, способные улучшать зрение на длительный срок. Разработку возглавила Джованна Беноцци, директор Центра. По ее словам, цель исследования состояла в том, чтобы предоставить пациентам с пресбиопией эффективный и безопасный способ коррекции зрения без хирургического вмешательства. Новые капли, созданные на основе пилокарпина и диклофенака, показали убедительные результаты: уже через час после первого пр ...>>

Случайная новость из Архива

Электронный контроль генов 25.01.2017

Мы обычно не рады всяким багам и вирусам в своих цифровых гаджетах, но это, похоже, может измениться. Ученые нашли способ контролировать гены бактерий по щелчку выключателя с помощью электричества.

Синтетические биологи с удовольствием ищут пути соединения модифицированных организмов с электроникой, чтобы у нас были живые девайсы и гаджеты. Возможность создавать микробы на заказ, чтобы те чувствовали окружающую среду и делали биологические молекулы, будет особенно ценно для устройств, которые будут работать внутри нашего тела, говорит Уильям Бентли из Университета Мэриленда. Например, подобное устройство может использовать живой организм для выявления химических веществ, производимых болезнетворными бактериями, и для выделения соответствующего антибиотика.

Чтобы определенные гены отвечали на электрическую стимуляцию, команда Бентли так называемыми редокс-сигнальными молекулами. Эти биологические молекулы есть во всех клетках, и они способны подцеплять и передавать электроны. Также ученые воспользовались естественными генетическими компонентами в E. coli, которые отвечают на оксидативный стресс, тот происходит, когда слишком много молекул в организме окисляются.

Чтобы дать электрический заряд, исследователи погрузили электрод в жидкость с бактериями. Когда электрод дает положительный заряд, редокс-молекулы окисляются и запускают генетические механизмы, отвечающий на оксидативный стресс. С помощью такой процедуры Бентли показал, как E. coli под воздействием разряда плавают или начинают светиться.

Они также заставили бактерию выпускать сигнальную молекулу, которая заставляет светиться другую бактерию, тем самым показав, что можно так спроектировать один набор бактерий, чтобы те при электроразряде действовали на другой набор бактерий.

Процедура подразумевает лишь небольшую "перепрошивку" бактерий при тщательном контроле процесса. Например, таким образом можно получать биосенсоры, где модифицированные бактерии могут распознавать определенные вещества, например, идентифицировать инфекции и отвечать свечением. По оценкам специалистов для внедрения этой технологии понадобится всего лишь год или два, а уж дальше процедура сращивания биологических и цифровых устройств может быть запущена полным ходом.

Другие интересные новости:

▪ Осознанность усиливает эгоизм

▪ Созданы зеркала из 1000 атомов

▪ Органические светодиоды для медицинских приборов

▪ Опасность электронного мусора

▪ Возраст счастливого брака

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Бытовые электроприборы. Подборка статей

▪ статья Избирательное сродство (Сродство душ). Крылатое выражение

▪ статья Если молекулы движутся, то почему мы не видим, что вещи изменяются? Подробный ответ

▪ статья Просо волосовидное. Легенды, выращивание, способы применения

▪ статья Автомобильный усилитель на микросхеме TA8215H. Энциклопедия радиоэлектроники и электротехники

▪ статья На страже покоя. Физический эксперимент

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:





Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2025