Menu English Ukrainian Russian Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Индикаторы уровня сигнала

Бесплатная техническая библиотека

Энциклопедия радиоэлектроники и электротехники / Аудиотехника

Комментарии к статье Комментарии к статье

Не секрет, что звучание системы во многом зависит от уровня сигнала на ее участках. Контролируя сигнал на переходных участках схемы, мы можем судить о работе различных функциональных блоков: коэффициенте усиления, вносимых искажениях и т.д. Так же бывают случаи, когда результирующий сигнал просто не возможно услышать. В тех случаях, когда не возможно контролировать сигнал на слух, применяются различного рода индикаторы уровня.

Для наблюдения могут использоваться как стрелочные приборы, так и специальные устройства, обеспечивающие работу "столбцовых" индикаторов. Итак, рассмотрим их работу более подробно.

1. Шкальные индикаторы

1.1 Простейший шкальный индикатор

Этот вид индикаторов наиболее прост из всех существующих. Шкальный индикатор состоит из стрелочного прибора и делителя. Упрощенная схема индикатора приведена на рис.1.

Индикаторы уровня сигнала. Шкальный индикатор уровня
Рис.1

В качестве измерителей чаще всего используются микроамперметры с током полного отклонения 100 - 500мкА. Такие приборы рассчитаны на постоянный ток, поэтому для их работы звуковой сигнал необходимо выпрямить диодом. Резистор предназначен для преобразования напряжения в ток. Собственно говоря, прибор измеряет ток, проходящий через резистор. Рассчитывается элементарно, по закону Ома (был такой. Георгий Семеныч Ом) для участка цепи. При этом нужно учесть, что напряжение после диода будет в 2 раза меньше. Марка диода не важна, так что подойдет любой, работающий на частоте больше 20кГц.

Итак, расчет: R = 0.5U/I 

где:   R - сопротивление резистора (Ом)

U - Максимальное измеряемое напряжение (В)

I - ток полного отклонения индикатора (А)

Гораздо удобнее оценивать уровень сигнала, задав ему некоторую инерционность. Т.е. индикатор показывает среднее значение уровня. Этого легко добиться, подключив параллельно прибору электролитический конденсатор, однако следует учесть, что при этом напряжение на приборе увеличится в (корень из 2) раз. Такой индикатор может быть использован для измерения выходной мощности усилителя. Что же делать, если уровня измеряемого сигнала не хватает, что бы "расшевелить" прибор? В этом случае на помощь приходят такие парни, как транзистор и операционный усилитель (далее ОУ).

1.2 Шкальный индикатор на транзисторе

Если можно измерить ток через резистор, то можно измерить и коллекторный ток транзистора. Для этого нам понадобится сам транзистор и коллекторная нагрузка (тот же самый резистор). Схема шкального индикатора на транзисторе приведена на рис. 2.

Индикаторы уровня сигнала. Шкальный индикатор на транзисторе
Рис. 2

Здесь тоже все просто. Транзистор усиливает сигнал по току, а в остальном все работает так же. Коллекторный ток транзистора должен превышать ток полного отклонения прибора как минимум в 2 раза (так оно спокойнее и для транзистора, и для Вас), т.е. если ток полного отклонения 100 мкА, то коллекторный ток должен быть не менее 200мкА. Собственно говоря,  это актуально для миллиамперметров, т.к. через самый слабый транзистор "со свистом" пролетает 50 мА. Теперь смотрим справочник и находим в нем коэффициент передачи по току h21э.

Вычисляем входной ток: Ib = Ik/h21Э  

где: Ib - входной ток

Ik - ток полного отклонения = ток коллектора

h21Э - коэффициент передачи тока

R1 вычисляется по закону Ома для участка цепи:  R=Ue/Ik   

где:R - сопротивление R1

Ue - напряжение питания

Ik - ток полного отклонения = ток коллектора

R2 предназначен для подавления напряжения на базе. Подбирая его нужно добиться максимальной чувствительности при минимальном отклонении стрелки в отсутствии сигнала. R3 регулирует чувствительность и его сопротивление, практически, не критично.

Бывают случаи, когда сигнал требуется усилить не только по току, но и по напряжению. В этом случае схема индикатора дополняется каскадом с ОЭ. Такой индикатор применен, например, в магнитофоне "Комета 212". Его схема приведена на рис. 3.

Индикаторы уровня сигнала. Шкальный индикатор на транзисторе с усилителем
Рис. 3

1.3 Шкальный индикатор на ОУ

Такие индикаторы  обладают высокой чувствительностью и входным сопротивлением, следовательно, вносят минимум изменений в измеряемый сигнал. Один из способов использования ОУ - преобразователь "напряжение - ток" приведен на рис. 4.

Индикаторы уровня сигнала. Шкальный индикатор на ОУ
Рис. 4

Такой индикатор обладает меньшим входным сопротивлением, зато весьма прост в расчетах и изготовлении.

Вычислим сопротивление R1: R=Us /Imax   

где: R - сопротивление входного резистора

Us - Максимальный уровень сигнала

Imax - ток полного отклонения

Диоды выбираются по тому же критерию, как и в других схемах.

Если уровень сигнала низок и (или) требуется высокое входное сопротивление, можно воспользоваться повторителем. Его схема приведена на рис. 5.

Индикаторы уровня сигнала. Шкальный индикатор на ОУ с повторителем
Рис. 5

Для уверенной работы диодов, выходное напряжение рекомендуется поднять до 2-3 В. Итак в расчетах отталкиваемся от выходного напряжения ОУ. Первым делом выясним нужный нам коэффициент усиления: К= Uвых/Uвх.

Теперь вычислим резисторы R1 и R2: K=1+(R2/R1) 

В выборе номиналов ограничений, казалось бы, нет, но R1 не рекомендуется ставить меньше 1кОм.

Теперь вычислим R3: R=Uo/I 

где: R - сопротивление R3

Uo - выходное напряжение ОУ

I - ток полного отклонения

2. Пиковые (светодиодные) индикаторы

2.1 Аналоговый индикатор

Пожалуй, наиболее популярный вид индикаторов в настоящее время. Начнем с простейших. На рис.6 приведена схема индикатора "сигнал/пик" на основе компаратора. Рассмотрим принцип действия. Порог срабатывания задан опорным напряжением, которое устанавливается на инвертирующем входе ОУ делителем R1R2. Когда сигнал на прямом входе превышает опорное напряжение, на выходе ОУ появляется +Uп, открывается VT1 и загорается VD2. Когда сигнал ниже опорного напряжения, на выходе ОУ действует -Uп. В этом случае открыт VT2 и светится VD2. Теперь рассчитаем это чудо. Начнем с компаратора. Для начала выберем напряжение срабатывания (опорное напряжение) и резистор R2 в пределах 3 - 68 кОм.

Вычислим ток в источнике опорного напряжения

Iatt=Uоп/Rб

где: Iatt - ток через R2 (током инвертирующего входа можно пренебречь)

Uоп - опорное напряжение

Rб - сопротивление R2

Индикаторы уровня сигнала. Пиковый светодиодный индикатор
Рис. 6

Теперь вычислим

R1. R1=(Ue-Uоп)/ Iatt 

где: Ue - напряжение источника питания

Uоп - опорное напряжение (напряжение срабатывания)

Iatt - ток через R2

Ограничительный резистор R6 подбирается по формуле

R1=Ue/ ILED  

где: R - сопротивление R6

Ue - напряжение питания

ILED - прямой ток светодиода (рекомендуется выбрать в пределах 5 - 15 мА)

Компенсирующие резисторы R4, R5 выбираются по справочнику и соответствуют минимальному сопротивлению нагрузки для выбранного ОУ.

2.2 Индикаторы на логических элементах

Начнем с индикатора предельного уровня с одним светодиодом (рис. 7). В основе этого индикатора лежит триггер Шмитта. Как известно триггер Шмитта обладает некоторым гистерезисом т.е. порог срабатывания отличается от порога отпускания. Разность этих порогов (ширина петли гистерезиса) определяется отношением R2 к R1 т.к. триггер Шмитта представляет собой усилитель с положительной обратной связью. Ограничительный резистор R4 вычисляется по тому же принципу, что и в предыдущей схеме. Ограничительный резистор в цепи базы рассчитывается исходя из нагрузочной способности ЛЭ. Для КМОП (рекомендуется именно КМОП-логика) выходной ток составляет примерно 1,5 мА.

Индикаторы уровня сигнала. Индикаторы на логических элементах
Рис.7

Для начала вычислим входной ток транзисторного каскада:

Ib=ILED/h21Э 

где: Ib - входной ток транзисторного каскада

ILED - прямой ток светодиода (рекомендуется выставить 5 - 15 мА)

h21Э - коэффициент передачи тока

Теперь мы можем приблизительно рассчитать входное сопротивление:

Z=E/Ib  

где: Z - входное сопротивление

E - напряжение питания

Ib - входной ток транзисторного каскада

Если входной ток не превышает нагрузочную способность ЛЭ можно обойтись без R3, в противном случае его можно рассчитать по формуле:

R=(E/Ib)-Z 

где: R - R3

E - напряжение питания

Ib - входной ток

Z - входное сопротивление каскада

Для измерения сигнала "столбиком" можно собрать многоуровневый индикатор (рис. 8). Такой индикатор прост, но его чувствительность мала и годится только для измерения сигналов от 3-х вольт и выше. Пороги срабатывания ЛЭ устанавливаются подстроечными резисторами. В индикаторе использованы элементы ТТЛ, в случае применения КМОП, на выходе каждого ЛЭ следует установить усилительный каскад.

Индикаторы уровня сигнала. Многоуровневый индикатор на светодиодах
Рис.8

2.3. Пиковые индикаторы на специализированных микросхемах

Наиболее простой вариант изготовления оных. Некоторые схемы приведены на рис. 9

Индикаторы уровня сигнала. Пиковые индикаторы на специализированных микросхемах
Рис.9 (нажмите для увеличения)

Так же можно использовать и другие усилители индикации. Схемы включения к ним можно спросить в магазине или у Яндекса. Так же можно заказать готовые наборы у Мастеркита, masterkit.ru/main/bycat.php?num=15

3. Пиковые (люминесцентные) индикаторы

В свое время применялись в отечественной технике, сейчас широко применяются в музыкальных центрах. Такие индикаторы весьма сложны в изготовлении (включают в себя специализированные микросхемы и микроконтроллеры) и в подключении (требуют нескольких источников питания). Я не рекомендую использовать их в любительской технике.

Автор: Павел Улитин, Overlord7[собачка]yandex.ru, ICQ#: 322-026-295; Публикация: cxem.net

Смотрите другие статьи раздела Аудиотехника.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Искусственная кожа для эмуляции прикосновений 15.04.2024

В мире современных технологий, где удаленность становится все более обыденной, сохранение связи и чувства близости играют важную роль. Недавние разработки немецких ученых из Саарского университета в области искусственной кожи представляют новую эру в виртуальных взаимодействиях. Немецкие исследователи из Саарского университета разработали ультратонкие пленки, которые могут передавать ощущение прикосновения на расстоянии. Эта передовая технология предоставляет новые возможности для виртуального общения, особенно для тех, кто оказался вдали от своих близких. Ультратонкие пленки, разработанные исследователями, толщиной всего 50 микрометров, могут быть интегрированы в текстильные изделия и носиться как вторая кожа. Эти пленки действуют как датчики, распознающие тактильные сигналы от мамы или папы, и как исполнительные механизмы, передающие эти движения ребенку. Прикосновения родителей к ткани активируют датчики, которые реагируют на давление и деформируют ультратонкую пленку. Эта ...>>

Кошачий унитаз Petgugu Global 15.04.2024

Забота о домашних животных часто может быть вызовом, особенно когда речь заходит о поддержании чистоты в доме. Представлено новое интересное решение стартапа Petgugu Global, которое облегчит жизнь владельцам кошек и поможет им держать свой дом в идеальной чистоте и порядке. Стартап Petgugu Global представил уникальный кошачий унитаз, способный автоматически смывать фекалии, обеспечивая чистоту и свежесть в вашем доме. Это инновационное устройство оснащено различными умными датчиками, которые следят за активностью вашего питомца в туалете и активируются для автоматической очистки после его использования. Устройство подключается к канализационной системе и обеспечивает эффективное удаление отходов без необходимости вмешательства со стороны владельца. Кроме того, унитаз имеет большой объем смываемого хранилища, что делает его идеальным для домашних, где живут несколько кошек. Кошачий унитаз Petgugu разработан для использования с водорастворимыми наполнителями и предлагает ряд доп ...>>

Привлекательность заботливых мужчин 14.04.2024

Стереотип о том, что женщины предпочитают "плохих парней", долгое время был широко распространен. Однако, недавние исследования, проведенные британскими учеными из Университета Монаша, предлагают новый взгляд на этот вопрос. Они рассмотрели, как женщины реагируют на эмоциональную ответственность и готовность помогать другим у мужчин. Результаты исследования могут изменить наше представление о том, что делает мужчин привлекательными в глазах женщин. Исследование, проведенное учеными из Университета Монаша, приводит к новым выводам о привлекательности мужчин для женщин. В рамках эксперимента женщинам показывали фотографии мужчин с краткими историями о их поведении в различных ситуациях, включая их реакцию на столкновение с бездомным человеком. Некоторые из мужчин игнорировали бездомного, в то время как другие оказывали ему помощь, например, покупая еду. Исследование показало, что мужчины, проявляющие сочувствие и доброту, оказались более привлекательными для женщин по сравнению с т ...>>

Случайная новость из Архива

Электромобили смогут питаться от кузовных панелей 15.11.2014

Австралийские исследователи из Квинслендского технологического университета разрабатывают новую технологию, которая позволит существенно улучшить подсистему питания электромобилей.

Идея заключается в использовании суперконденсаторов нового типа. Дело в том, что по сравнению с обычными аккумуляторами, такие элементы обладают рядом преимуществ: это небольшое время зарядки, длительный срок службы и большие максимальные токи зарядки и разрядки. Но есть и недостатки: в сравнении с теми же литий-ионными батареями суперконденсаторы имеют меньшую плотность хранения заряда.

Ученые из Австралии разрабатывают пленочные суперконденсаторы, содержащие угольные электроды и электролит. Такие элементы могут быть без проблем спрятаны в кузовных панелях - за обшивкой дверей и потолка, под крышкой багажника или покрытием пола.

Поначалу суперконденсаторы дополнят в электромобилях традиционные аккумуляторы. Подобный подход позволит, к примеру, улучшить динамические характеристики за счет возможности суперконденсаторов быстро отдавать заряд.

В перспективе планируется разработка суперконденсаторов, чья плотность хранения заряда будет сопоставимой или даже превзойдет таковую у литий-ионных батарей. Это позволит полностью пересмотреть концепцию электрических транспортных средств.

Другие интересные новости:

▪ Белок редактирует другие белки

▪ Проект сверхзвукового поезда

▪ Передовые SSD-накопители от Intel

▪ Эффективные суперконденсаторы из конопли

▪ Мобильный телефон - друг туриста

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Важнейшие научные открытия. Подборка статей

▪ статья Инструкция по охране труда для машинистов электростанций передвижных

▪ статья Как лечится сломанная кость? Подробный ответ

▪ статья Основные требования к персоналу по оказанию первой помощи пострадавшим

▪ статья Прибор автолюбителя. Энциклопедия радиоэлектроники и электротехники

▪ статья Электропроводки. Открытые электропроводки внутри помещений. Энциклопедия радиоэлектроники и электротехники

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:





All languages of this page

Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2024