Menu Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


О питании радиоприемников свободной энергией. Энциклопедия радиоэлектроники и электротехники

Бесплатная техническая библиотека

Энциклопедия радиоэлектроники и электротехники / Радиоприем

Комментарии к статье Комментарии к статье

Возможно, из-за подорожания аккумуляторных элементов и батарей, а может быть, и по какой-то другой причине, но в последнее время сильно возрос интерес радиослушателей к проблеме питания радиоприемника "свободной энергией" излучения мощных передающих радиовещательных станций. В ряде периодических изданий появились сообщения о "громкоговорящих" детекторных устройствах, а также о приемниках, которые работают на телефоны и, питаясь от поля какой-либо мощной радиостанции, принимают программы других менее мощных станций. Поскольку причины такого явления а какой-то мере окутаны тайной, а в литературе предлагаются самые невероятные схемные решения, с помощью которых якобы можно получить еще более невероятные результаты.

Цель настоящей статьи - помочь радиолюбителям, интересующимся данной проблемой, разобраться в ней с объективной точки зрения и реально оценить возможности радиоприемных устройств, питающихся "свободной энергией" мощных радиостанций. Вопросы оптимального детектирования и построения самих приемников предполагается рассмотреть в одной из следующих статей.

Известно, что ЭДС, наводимая полем передающей радиостанции в антенне радиоприемнике, может быть определена по формуле: ε = Е*hд, где Е - напряженность поля радиостанции в точке приема, а hд - действующая высота антенны. Однако нам нужно максимизировать вовсе не ЭДС, а мощность принимаемого сигнала, подводимого к детектору, входное сопротивление которого Rвх зависит от его схемы, сопротивления нагрузки, в в некоторой степени и от величины наведенной в антенне ЭДС. Поскольку мощность поступающего на детектор сигнала Р = U*I (где U - подводимое к детектору напряжение, а I - протекающий через него ток), а входное сопротивление Rвх = U/I, то максимизировать мощность можно, изменяя входное сопротивление детектора, выбирая различные схемы согласования его с антенной, а также увеличивая напряжение на детекторе, уменьшая ток, и наоборот.

С другой стороны, известно, что источник (антенная цепь) отдает в нагрузку (детектор) максимальную мощность в том случае, когда его активное сопротивление равно входному сопротивлению нагрузки, т. е. RА = Rвх, а реактивное сопротивление скомпенсировано включением реактивного сопротивления другого знака. Это обычные условия согласования источника с нагрузкой Как их выполнить в реальной ситуации?

Наиболее мощные радиостанции работают в диапазонах длинных и средних волн. Влажная почва, пресная вода, а тем более морская, обладают на этих частотах свойствами проводника, в котором токи проводимости намного больше токов смещения. В результате волны с горизонтальной поляризацией оказываются у поверхности земли значительно ослабленными. По этой причине для радиовещания используют волны с вертикальной поляризацией, излучаемые вертикальными мачтами - антеннами с более или менее развитой горизонтальной частью и хорошим заземлением.

Вопросы проектирования длинноволновых и средневолновых антенн были решены еще в тридцатые годы и подробно освещены в учебниках сороковых - пятидесятых годов, этим объясняется и "древность" литературы, приведенной в конце статьи.

О питании радиоприемников свободной энергией
Рис. 1

Эскиз вертикальной антенны с заземлением показан на рис 1,а. Собственная (резонансная) длина волны, излучаемой такой антенной (напомним, что ею считается волна, на частоте которой сопротивление на разъеме ХТ1 активно и равно сопротивлению четвертьволнового несимметричного вибратора, т. е. ~37 Ом) λ0=4*IД, а действующая высота hд=2IА/π. В любительских условиях построить четвертьволновую вертикальную антенну практически невозможно, поскольку она оказывается слишком высокой, поэтому обычно используют Г-образные (рис. 1, б) и Т-образные (рис. 1,в) антенны, у которых параметр λ0= КIД, где IА = h + IГ, а К - коэффициент, значение которого можно определить по таблице:

Антенна К
Г-образная с IГ, < h 4,5...5
Г-образная с IГ, > h 5...6
Т-образная с IГ, > h 6...8
Зонтичная 6...10

Можно было бы порекомендовать зонтичную антенну, имеющую 3-4 горизонтальных луча, соединенных в одной точке с вертикальной частью, однако из-за сложности конструкции она применяется крайне редко.

В приеме радиоволн участвует лишь вертикальная часть антенны, горизонтальная же выполняет функции емкостной нагрузки, увеличивая собственную длину ее волны и действующую высоту. Чем более развита горизонтальная часть, тем точнее выполняется соотношение hд = h и эффективнее сама антенна.

В большинства случаев антенна принимает сигналы, длина волны которых больше собственной длины волны антенны λ >λ0, и ее сопротивление носит комплексный характер (Za) с активной (RΣ) и реактивной (Х) составляющими, определяемыми по формулам:

ZА=RА - jX;
RΣ = 1600(hд/λ)2;
X = W*ctg(πλ0/λ),

где W - волновое сопротивление провода антенны, равное примерно 450...560 Ом.

О питании радиоприемников свободной энергией
Рис. 2

Для компенсации емкостного сопротивления антенны в ее цепь включают индуктивность (удлиняющую катушку), и эквивалентная схема антенны приобретает вид, показанный на рис. 2. Теперь имеется возможность подсчитать мощность, передаваемую антенной в нагрузку (детектор), причем потери в ее цепи учитывать пока не будем. При равенстве входного сопротивления детектора и активной составляющей сопротивления антенны Rвх=RΣ мощность в нагрузке максимальна и равна

Р0= (ε/2)2/RΣ.

Подставляя в эту формулу выражения для ε и RΣ, получаем

P0= Е2 hд2 λ2 / (4*1600*hд2) = Е2 λ2 / 6400

Выведенная нами формула определяет максимальную мощность, которая может быть наведена полем радиостанции в идеальной антенне без потерь. Интересно отметить, что от размеров и конструкции конкретной антенны эта мощность не зависит. Из сказанного можно сделать следующие выводы.

- возможность питания приемников "свободной энергией" зависит только от напряженности поля радиостанции в месте приема;
- прием лучше вести на длинных и сверхдлинных волнах;
- для эффективного приема необходимо согласовать активные сопротивления детектора и антенны, а также скомпенсировать реактивное сопротивление антенны.

Для примера рассчитаем максимальную мощность, которая может навестись в антенне полем ДВ радиостанции, работающей на частоте 171 кГц (λ=1753 м) при его напряженности 20 мВ/м, которая имеет место во многих районах Московской области и даже за ее пределами:

Р0= E22/6400 =0,022 * 17532 /6400=0,19 Вт.

Такой мощности вполне достаточно для громкоговорящей работы большинства портативных приемников, поскольку она эквивалентна Uпит = 9 В при токе 20 мА.

К сожалению, реальная ситуация далека от идеальной. Дело в том, что в антенной цепи имеется сопротивление потерь Rп, складывающееся из сопротивления провода антенны, активного сопротивления согласующей катушки L (рис. 2) и сопротивления заземления. КПД такой антенны определяется выражением

η = RΣ/(RΣ+Rп).

а получаемая от нее мощность - формулой:

Р = Р0*η = E2 λ2*η / 6400

Вычисление КПД антенны задача вполне решаемая. Погонное сопротивление медного провода диаметром 1 мм постоянному току составляет 22,5 Ом/км и возрастает примерно в 2 раза на частоте 200 кГц [1]. Для провода диаметром 2 мм аналогичные значения будут 5,5 Ом/км и 3 раза. Таким образом, сопротивление провода антенны RПА длиной 20...50 м можно оценить в 0,3...3 Ом. Сопротивление заземления РПЗ больше. М. Б. Шулейкин в свое время предложил такую эмпирическую формулу для определения потерь в заземлении [2]:

RПЗ = Aλ/λ0,

где коэффициент А изменяется от 0,5...2 Ом для хорошего заземления и до 4...7 Ом - для плохого. Сопротивление согласующей катушки Rпк зависит от ее конструктивной добротности Q и может быть рассчитано по формуле:

Rпк = X/Q.

Используя данные приведенного выше примера рассчитаем КПД Г-образной антенны с высотой подвеса 10 м и длиной горизонтальной части 20 м, имеющей hд=10 м. По таблице определим коэффициент К = 6, тогда собственная длина волны антенны будет равна: λ0=6*(10+20) = 180 м, а λ/λ0 = 10. При диаметре провода 1 мм сопротивление RПА= 22,5*2*0,03 = 1,3 Ом, удовлетворительное заземление может быть получено при Rое= 3*10 = 30 Ом. При волновом сопротивлении провода антенны W = 500 Ом реактивное сопротивление антенны X = 500*ctg(π/10) = 500/0,31 = 1600 Ом. Задавшись конструктивной добротностью согласующей катушки Q = 250, найдем ее сопротивление Rпк = 1600/250 = 6,45 Ом. Общее сопротивление потерь антенны, равное сумме всех найденных, составит около 38 Ом, в то время как сопротивление излучения

RΣ = 1600(hД/λ)2=1600(10/1753)2 = 0,05 Ом,

а это значит,что КПД η =0,05/38 =0,14%!

Таким образом, мощность сигнала, отдаваемая в нагрузку рассмотренной антенной, составит всего 0,19*0,0014=0,26 мВт, что равнозначно, например, напряжению питания 1 В при токе 0,26 мА. Этого достаточно для работы приемника на телефоны, но маловато для питания громкоговорящего приемника.

Заметим, что основную долю в потери антенны вносит заземление. Чтобы сделать его хорошим, надо прокопать землю до водоносного слоя и поместить на этой глубине металлический предмет, возможно, большей площади, разумеется, закопав потом яму. Можно рекомендовать также изготовить систему проводов-противовесов, радиально расходящихся от точки заземления и закопанных на небольшой глубине. Если эксперименты проводятся на садовом участка, то в качестве заземления можно использовать трубы водозаборной скважины, водопровода, противовесом же может служить и металлическая ограда участка, если позаботиться о хорошем электрическом контакте отдельных ее частей.

Немаловажный вопрос: как обеспечить нужное согласование антенны с детектором? Введение лишних реактивных элементов только ухудшает КПД из-за присущих им дополнительных потерь, поэтому желательно обойтись только элементами, которые показаны на рис. 2. В этом случае рекомендуемая схема приемника примет вид, показанный на рис. 3.

О питании радиоприемников свободной энергией
Рис. 3

Катушка переменной индуктивности L1 вместе с емкостью антенны образует колебательный контур, настроенный на частоту мощной радиостанции. Реактивные сопротивления антенны и катушки при этом равны и компенсируются. Последовательное активное сопротивление антенной цепи RА = RΣ + Rппересчитывается в эквивалентное сопротивление Rое = X2/RА, подключенное параллельно катушке Если оно слишком велико для согласования со входным сопротивлением детектора, последний подключают к отводу катушки таким образом, чтобы выполнялось условие n2*Rое=Rвх, где n - отношение числа витков катушки от заземленного вывода до отвода к общему числу витков. Схема детектора, содержащая диод VD1, блокировочный конденсатор С1 и нагрузку, пояснений не требует.

В приведенном выше примере Rое=16002/38 = 67,4 кОм. Если детектор имеет входное сопротивление порядка 2 кОм, что справедливо при работе его на телефоны сопротивлением 4 кОм, n = (2/67)0,5 = 0,17, следовательно, отвод надо сделать примерно от 1/6 части витков всей катушки.

Важной проблемой в сельской местности всегда была и остается грозозащита антенн. Лучше всего антенну постоянно соединить с заземлением. Схема приемника, показанного на рис. 3, этому условию отвечает. Тем не менее даже и не особенно близкие удары молний наводят в больших антеннах импульсную ЭДС, измеряемую многими киловольтами, что отнюдь не безопасно. Защитить диод детектора поможет газонаполненный разрядник или даже простая неоновая лампочке HL1, включенная между антенной и заземлением. И все же при близкой грозе антенну следует заземлять специальным переключателем SA1.

Парадоксальный, на первый взгляд, результат, заключающийся в независимости мощности, снимаемой с антенны, от ее размеров при отсутствии потерь и при согласовании с нагрузкой, легко объясним. Хорошо известно, что передающая антенна, если в ней нет потерь и если она согласована с источником сигнала, излучает всю подводимую к ней мощность. Поэтому различные антенны с одинаковой диаграммой направленности при указанных выше условиях создают на одинаковом расстоянии одну и ту же напряженность электромагнитного поля. Остается добавить - независимо от размеров антенны. Конечно, как только речь заходит о реальных антеннах с потерями, указанное утверждение сразу теряет практическую ценность При уменьшении размеров антенн их сопротивление излучения становится крайне малым, реактивная составляющая сопротивления возрастает, что затрудняет согласование антенны с источником сигнала, потери увеличиваются, поэтому эффективность антенн резко падает

Из обратимости антенн следует, что при одинаковой напряженности поля, согласовании с нагрузкой и отсутствии потерь приемные антенны различных размеров обеспечат и в нагрузке одинаковую мощность. Конечно, и для приемных антенн потери и трудности согласования с нагрузкой оставляют за полученным результатом чисто теоретическое значение.

Отметим еще раз, что все приведенные в статье расчеты справедливы лишь в тем случае, когда размеры антенны значительно меньше длины волны.

Литература

  1. Г. Гинкин Справочник по радиотехнике. -М. - Л:ГЭИ, 1946.
  2. Г. Белоцерксвский. Антенны. - М.. Оборонгиз, 1956.

Автор: В.Поляков, г.Москва

Смотрите другие статьи раздела Радиоприем.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

<< Назад

Последние новости науки и техники, новинки электроники:

Питомцы как стимулятор разума 06.10.2025

Помимо эмоциональной поддержки, домашние питомцы могут оказывать заметное воздействие на когнитивные процессы, особенно у пожилых людей. Новое масштабное исследование показало, что общение с кошками и собаками не просто улучшает настроение - оно действительно способствует замедлению возрастного снижения умственных способностей. Работа проводилась в рамках проекта Survey of Health, Ageing and Retirement in Europe (SHARE), охватывающего период с 2004 по 2022 год. В исследовании приняли участие тысячи европейцев старше 50 лет. Анализ показал, что владельцы домашних животных демонстрируют более устойчивые когнитивные функции по сравнению с теми, кто не держит питомцев. Особенно выражен эффект оказался у владельцев кошек и собак. Согласно данным ученых, владельцы собак дольше сохраняют хорошую память, в то время как хозяева кошек медленнее теряют способность к быстрому речевому взаимодействию. Исследователи связывают это с тем, что ежедневное взаимодействие с животными требует внимани ...>>

Мини-ПК ExpertCenter PN54-S1 06.10.2025

Компания ASUSTeK Computer презентовала новый мини-компьютер ASUS ExpertCenter PN54-S1. Устройство ориентировано на пользователей, которым важно сочетание производительности, энергоэффективности и универсальности - от офисных задач до мультимедийных проектов. В основе ExpertCenter PN54-S1 лежит современная аппаратная платформа AMD Hawk Point, использующая архитектуру Zen 4. Это поколение чипов отличается улучшенным управлением энергопотреблением и повышенной вычислительной мощностью. Новинка доступна в конфигурациях с процессорами Ryzen 7260, Ryzen 5220 и Ryzen 5210, представленных AMD в начале 2025 года. Таким образом, устройство охватывает широкий диапазон задач - от базовых офисных до ресурсоемких вычислений. Корпус мини-ПК выполнен из прочного алюминия и имеет размеры 130&#215;130&#215;34 мм, что делает его практически незаметным на рабочем столе или за монитором. Несмотря на компактность, внутренняя компоновка позволяет установить два модуля оперативной памяти SO-DIMM ...>>

Глазные капли, возвращающие молодость зрению 05.10.2025

С возрастом человеческий глаз постепенно теряет способность четко видеть на близком расстоянии - развивается пресбиопия, или возрастная дальнозоркость. Этот естественный процесс связан с утратой эластичности хрусталика и ослаблением цилиарной мышцы, отвечающей за фокусировку. Миллионы людей по всему миру сталкиваются с необходимостью носить очки для чтения или прибегают к хирургическим методам коррекции. Однако исследователи из Центра передовых исследований пресбиопии в Буэнос-Айресе представили решение, которое может стать удобной и неинвазивной альтернативой - специальные глазные капли, способные улучшать зрение на длительный срок. Разработку возглавила Джованна Беноцци, директор Центра. По ее словам, цель исследования состояла в том, чтобы предоставить пациентам с пресбиопией эффективный и безопасный способ коррекции зрения без хирургического вмешательства. Новые капли, созданные на основе пилокарпина и диклофенака, показали убедительные результаты: уже через час после первого пр ...>>

Случайная новость из Архива

Доисторическая жара не была вызвана пожарами 11.06.2025

Изучение климатических изменений прошлого помогает понять механизмы, управляющие современной планетарной погодой и природными катаклизмами. Один из самых драматичных эпизодов в истории Земли - палеоцен-эоценовый термический максимум, произошедший около 55 миллионов лет назад. В этот период средняя температура на планете повысилась примерно на 11 градусов по сравнению с сегодняшним уровнем, а побережье Северного Ледовитого океана напоминало по климату современные южные районы Крыма. Несмотря на важность этого явления, причины столь резкого потепления оставались предметом споров среди ученых. Новое исследование китайской группы ученых внесло важное уточнение в понимание роли природных пожаров в этом процессе.

В традиционных гипотезах предполагалось, что причиной резкого повышения температуры мог стать внезапный выброс "легкого" углерода - изотопа углерода-12, который обычно аккумулируется в органических остатках. Среди возможных источников такого углерода назывались масштабные пожары, особенно горение торфяников, которые могли высвободить огромное количество углеродистых соединений и спровоцировать парниковый эффект. Однако новое исследование, опубликованное в журнале Science China Earth Sciences, опровергло эту теорию.

Авторы работы сосредоточились на анализе так называемого черного углерода - частиц сажи и других углеродистых отложений, образующихся во время природных пожаров. Анализ осадочных пород из Китая, датируемых эпохой палеоцен-эоценового термического максимума, показал резкое снижение концентрации черного углерода: с 90 до 1,47 частей на миллион. Такое уменьшение указывает на почти полное исчезновение пожаров в момент наивысшего потепления. Хотя впоследствии в некоторых слоях отмечались кратковременные повышения, они оставались значительно ниже уровней до потепления.

Китайские исследователи отвергли предположение, что пожары прекратились из-за опустынивания, поскольку данные по спорам растений, особенно покрытосеменных, свидетельствовали о росте растительности после начала потепления. Более того, анализ минералов, связанных с испарением водоемов, указывал на увеличение осадков, что дополнительно подтверждало гипотезу о более влажном климате. Это позволило ученым предположить, что на территории современного Китая в те времена развернулись густые субтропические леса с плотными кронами. В таких условиях мертвая древесина оставалась влажной и практически не горела, что объясняло резкое падение частоты пожаров.

Интересно, что ситуация в Арктике в тот же период была противоположной. Там, наоборот, отмечалось увеличение числа природных пожаров, что логично, учитывая малое количество горючей растительности в холодные периоды. Потепление в арктической зоне способствовало расширению растительности и, соответственно, возрастанию пожарной активности.

Новые выводы имеют важное значение для современного понимания климатических процессов. В последние десятилетия ученые наблюдают сокращение числа природных пожаров на планете, что противоречит прогнозам о росте их частоты из-за глобального потепления. До сих пор не было ясно, связана ли эта тенденция с деятельностью человека или природными причинами. Исследование китайских ученых указывает на то, что в умеренном климате повышение температуры может подавлять распространение пожаров, вызывая увлажнение и увеличение растительности, а не стимулировать их.

Таким образом, палеоцен-эоценовое потепление представляет собой сложный и многогранный феномен, в котором пожары играли не роль инициатора, а скорее были следствием изменившихся климатических условий. Это открытие помогает лучше понять современные изменения климата и их влияние на экосистемы, а также уточняет представления о взаимодействии растительности, осадков и природных возгораний в условиях глобальных климатических колебаний.

Другие интересные новости:

▪ Жидкость, сохраняющая энергию 20 лет

▪ Океанские тепловые волны угрожают морской жизни

▪ В просторах космоса обнаружен метил

▪ Бактерии в космосе становятся устойчивее к антибиотикам

▪ Солнечная стена

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Эффектные фокусы и их разгадки. Подборка статей

▪ статья Дикий народ! Дети гор. Крылатое выражение

▪ статья Кто придумал оперу? Подробный ответ

▪ статья Права и обязанности граждан в области пожарной безопасности

▪ статья Футеровка для кузнечных горнов. Простые рецепты и советы

▪ статья Неразлучные семерки. Секрет фокуса

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:





Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2025