Menu Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Высокостабильный LC-генератор. Энциклопедия радиоэлектроники и электротехники

Бесплатная техническая библиотека

Энциклопедия радиоэлектроники и электротехники / Радиоприем

Комментарии к статье Комментарии к статье

В приемопередающей аппаратуре в качестве задающих генераторов часто используются генераторы, выполненные на основе емкостной трехточки. Схема такого генератора в общем виде представлена на рис. 1.

Высокостабильный LC-генератор
Рис. 1

Как и большинство других автогенераторов, емкостная трехточка содержит относительно большое число реактивных элементов (L1, С1, С2, С3 и С4), не только влияющих на частоту генерируемых колебаний, но и определяющих условия возникновения, а главное, поддержания автоколебательного процесса в генераторе. По этой причине реализация емкостной трехточки, обеспечивающей требуемое перекрытие по частоте, экспериментальным подбором номиналов элементов практически невозможна.

В этой связи необходимы простые методы расчета, пригодные для всего семейства LC-генераторов на основе емкостной трехточки. Ранее, в [1], были приведены общие соображения по методике расчета таких схем. Как показали эксперименты автора с различными "трехточечными" генераторами, для всех их разновидностей могут использоваться одни и те же расчетные соотношения.

Схема LC-генератора с емкостной трехточкой для частоты около 10 МГц приведена на рис. 2. Если требуется генератор, работающий на частоте, в N раз меньшей, все номиналы частотозадающих элементов (L1, С1...С6, С10) увеличиваются в N раз. Соответственно, наоборот. Все остальные элементы схемы имеют одни и те же значения для частот от 1 до 50 МГц.

Граничная частота передачи по току всех применяемых в схеме транзисторов должна быть в 5 (а лучше в 10) раз выше генерируемой частоты. Конечно, используемый в схеме транзистор КТ315А не является самым лучшим вариантом. Для получения устойчивой генерации (особенно при применении относительно низкочастного транзистора) может потребоваться соблюдение условия

С5/С6=1,2...1,5 (1)

Требуемое изменение емкости КПЕ (От С1min до С1max), необходимое для получения нужного перекрытия по частоте (от fmax до fmin), рассчитывается по формулам:

С1min = 1/(4*Pi2*L*fmax2) - 2,25*C3: (2)

С1max = 1/(4*Pi2*L*fmin2) - 2,25*C3: (2)

при С2=С2max/2 (на практике это подразумевает, что движок подстроечного конденсатора находится в среднем положении).

В формулах (2) и (3) соответствующие величины выражают в фарадах, генри и герцах. Если при расчетах получаются слишком малые величины C1min и С1max, либо вообще отрицательные значения, можно "позаимствовать" некоторую величину емкости (Сx) от величины С3 и затем добавить ее к величине С1. В этом случае будем иметь:

С3' = С3 - Сх, C1'min(C1'max) = C1min(C1max) + Cx. (4)

Пример. Рассчитаем генератор для fmin=14000 кГц, fmax=14350 кГц. В данном случае для fmin получается коэффициент увеличения частоты (относительно 10 МГц)

Kf= 14000/10000= 1,4

Тогда

C2max=30/1,4=22 (пФ);

С3 = 60/1,4 = 43 (пФ);

С4(С10) = 110/1,4 = 75 (пФ);

С5(С6)= 235/1,4 = 160 (пФ);

L1 = 1,5/1,4 = 1,1 (мкГн).

Далее по формулам (2) и (3) определяем

С1min =1/(39,44*1,1*10-6*(14,35*106)2)-2,25*43*10-12= 1,12*10-10-9,67*10-11 =1,53-10-11 (Ф)=15,3(пФ);

C1max=1/(39,44*1,1*10-6*(14,0*106)2)-2,25*43*10-12=1,18*10-10-9,67*10-11 = 2,13*10-11 (Ф)=21,3 (пФ);

При перестройке рассчитанного генератора движок подстроечного конденсатора С2 должен находиться в среднем положении (С2=С2max/2). На практике, возможно, потребуется некоторая корректировка емкости контура, выполняемая с помощью C2.

В приемопередающей аппаратуре в качестве задающих генераторов часто используются генераторы, выполненные на основе емкостной трехточки. Схема такого генератора в общем виде представлена на рис. 1. Как и большинство других автогенераторов, емкостная трехточка содержит относительно большое число реактивных элементов (L1, С1, С2, С3 и С4), не только влияющих на частоту генерируемых колебаний, но и определяющих условия возникновения, а главное, поддержания автоколебательного процесса в генераторе. По этой причине реализация емкостной трехточки, обеспечивающей требуемое перекрытие по частоте, экспериментальным подбором номиналов элементов практически невозможна.

В этой связи необходимы простые методы расчета, пригодные для всего семейства LC-генераторов на основе емкостной трехточки. Ранее, в [1], были приведены общие соображения по методике расчета таких схем. Как показали эксперименты автора с различными "трехточечными" генераторами, для всех их разновидностей могут использоваться одни и те же расчетные соотношения.

Схема LC-генератора с емкостной трехточкой для частоты около 10 МГц приведена на рис. 2. Если требуется генератор, работающий на частоте, в N раз меньшей, все номиналы частотозадающих элементов (L1, С1...С6, С10) увеличиваются в N раз. Соответственно, наоборот. Все остальные элементы схемы имеют одни и те же значения для частот от 1 до 50 МГц.

Высокостабильный LC-генератор
Рис. 2 (нажмите для увеличения)

Граничная частота передачи по току всех применяемых в схеме транзисторов должна быть в 5 (а лучше в 10) раз выше генерируемой частоты. Конечно, используемый в схеме транзистор КТ315А не является самым лучшим вариантом. Для получения устойчивой генерации (особенно при применении относительно низкочастного транзистора) может потребоваться соблюдение условия

С5/С6=1,2...1,5 (1)

Требуемое изменение емкости КПЕ (От С1min до С1max), необходимое для получения нужного перекрытия по частоте (от fmax до fmin), рассчитывается по формулам:

С1min = 1/(4*Pi2*L*fmax2) - 2,25*C3: (2)

С1max = 1/(4*Pi2*L*fmin2) - 2,25*C3: (2)

при С2=С2max/2 (на практике это подразумевает, что движок подстроечного конденсатора находится в среднем положении).

В формулах (2) и (3) соответствующие величины выражают в фарадах, генри и герцах. Если при расчетах получаются слишком малые величины C1min и С1max, либо вообще отрицательные значения, можно "позаимствовать" некоторую величину емкости (Сx) от величины С3 и затем добавить ее к величине С1. В этом случае будем иметь:

С3' = С3 - Сх, C1'min(C1'max) = C1min(C1max) + Cx. (4)

Пример. Рассчитаем генератор для fmin=14000 кГц, fmax=14350 кГц. В данном случае для fmin получается коэффициент увеличения частоты (относительно 10 МГц)

Kf= 14000/10000= 1,4

Тогда

C2max=30/1,4=22 (пФ);

С3 = 60/1,4 = 43 (пФ);

С4(С10) = 110/1,4 = 75 (пФ);

С5(С6)= 235/1,4 = 160 (пФ);

L1 = 1,5/1,4 = 1,1 (мкГн).

Далее по формулам (2) и (3) определяем

С1min =1/(39,44*1,1*10-6*(14,35*106)2)-2,25*43*10-12= 1,12*10-10-9,67*10-11 =1,53-10-11 (Ф)=15,3(пФ);

C1max=1/(39,44*1,1*10-6*(14,0*106)2)-2,25*43*10-12=1,18*10-10-9,67*10-11 = 2,13*10-11 (Ф)=21,3 (пФ);

При перестройке рассчитанного генератора движок подстроечного конденсатора С2 должен находиться в среднем положении (С2=С2max/2). На практике, возможно, потребуется некоторая корректировка емкости контура, выполняемая с помощью C2.

Литература

  1. Ред Э. Справочное пособие по высокочастотной схемотехнике. - М.: Мир, 1990.

Автор: В.Fhntvtyrj, UT5UDJ, г.Киев

Смотрите другие статьи раздела Радиоприем.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

<< Назад

Последние новости науки и техники, новинки электроники:

Лабораторная модель прогнозирования землетрясений 30.11.2025

Предсказание землетрясений остается одной из самых сложных задач геофизики. Несмотря на развитие сейсмологии, ученые все еще не могут точно определить момент начала разрушительного движения разломов. Недавние эксперименты американских исследователей открывают новые горизонты: впервые удалось наблюдать микроскопические изменения в контактной зоне разломов, которые предшествуют землетрясению. Группа под руководством Сильвена Барбота обнаружила, что "реальная площадь контакта" - участки, где поверхности разлома действительно соприкасаются - изменяется за миллисекунды до высвобождения накопленной энергии. "Мы открыли окно в сердце механики землетрясений", - отмечает Барбот. Эти изменения позволяют фиксировать этапы зарождения сейсмического события еще до появления традиционных сейсмических волн. Для наблюдений ученые использовали прозрачные акриловые материалы, через которые можно было отслеживать световые изменения в зоне контакта. В ходе искусственного моделирования примерно 30% ко ...>>

Музыка как естественный анальгетик 30.11.2025

Ученые все активнее исследуют немедикаментозные способы облегчения боли. Одним из перспективных направлений становится использование музыки, которая способна воздействовать на эмоциональное состояние и когнитивное восприятие боли. Новое исследование международной группы специалистов демонстрирует, что даже кратковременное прослушивание любимых композиций может значительно снижать болевые ощущения у пациентов с острой болью в спине. В эксперименте участвовали пациенты, обратившиеся за помощью в отделение неотложной помощи с выраженной болью в спине. Им предлагалось на протяжении десяти минут слушать свои любимые музыкальные треки. Уже после этой короткой сессии врачи фиксировали заметное уменьшение интенсивности боли как в состоянии покоя, так и при движениях. Авторы исследования подчеркивают, что музыка не устраняет саму причину боли. Тем не менее, она воздействует на эмоциональный фон пациента, снижает уровень тревожности и отвлекает внимание, что в сумме приводит к субъективном ...>>

Алкоголь может привести к слобоумию 29.11.2025

Проблема влияния алкоголя на стареющий мозг давно вызывает интерес как у врачей, так и у исследователей когнитивного старения. В последние годы стало очевидно, что границы "безопасного" употребления спиртного размываются, и новое крупное исследование, проведенное международной группой ученых, вновь указывает на это. Работы Оксфордского университета, выполненные совместно с исследователями из Йельского и Кембриджского университетов, показывают: даже небольшие дозы алкоголя способны ускорять когнитивный спад. Команда проанализировала данные более чем 500 тысяч участников из британского биобанка и американской Программы миллионов ветеранов. Дополнительно был выполнен метаанализ сорока пяти исследований, в общей сложности включавших сведения о 2,4 миллиона человек. Такой масштаб позволил оценить не только прямую связь между употреблением спиртного и развитием деменции, но и влияние генетической предрасположенности. Один из наиболее тревожных результатов касается людей с повышенным ге ...>>

Случайная новость из Архива

20-нм мобильные DRAM-чипы Samsung 12.05.2013

При выборе современного смартфона пользователи редко обращают особое внимание на подсистему оперативной памяти - обычно дело заканчивается лишь информацией об объеме "оперативки". Но это отнюдь не означает, что разработчики интегральных микросхем не занимаются развитием и усовершенствованием мобильной DRAM. Например, компания Samsung только что объявила о старте серийного выпуска новых чипов типа LPDDR3, изготовленных по 20-нм технологическому процессу и имеющих емкость 4 Гбит.

По замыслу разработчиков, микросхемы LPDDR3 должны заменить на рынке микросхемы типа LPDDR2, по крайней мере, в секторе "топовых" смартфонов и планшетных компьютеров. Для этого новички обладают целым рядом преимуществ: меньшими размерами, большей эффективностью, более высокой производительностью (пропускная способность 2133 Мбит/с против 800 Мбит/с у LPDDR2), и - что очень важно для рынка портативной электроники, - сниженным на 20% энергопотреблением. Отметим, что объединив четыре чипа LPDDR3, OEM-производители оперативной памяти получат в результате модуль объемом 2 Гбайт, "упакованный" в весьма и весьма компактный корпус толщиной всего 0,8 мм.

В ближайшем будущем компания Samsung планирует сделать ставку именно на 20-нм интегральные микросхемы оперативной памяти, постоянно увеличивая объемы выпуска изделий нового поколения. Это позволит ей успешно бороться с конкурентами на рынке мобильных DRAM-микросхем, который, по данным аналитического агентства Gartner, будет из года в год только наращивать объемы. Прогноз на ближайшее время выглядит следующим образом: по итогам 2013 года ожидается увеличение объемов рынка оперативной памяти на 13%, до отметки в $29,6 млрд. Из них около 35% будет приходиться именно на сегмент мобильной DRAM, или около $10 млрд.

Другие интересные новости:

▪ Принята новая космическая стратегия НАТО

▪ Древесный гриб - экологическая альтернатива пластику

▪ Беспроводной фен на солнечной энергии

▪ Турбина с другого конца света

▪ Шапка-невидимка из обычных линз

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Загадки для взрослых и детей. Подборка статей

▪ статья Игра в одни ворота. Крылатое выражение

▪ статья Кто первым сочинил детские стишки? Подробный ответ

▪ статья Монтажник по монтажу стальных и железобетонных конструкций. Должностная инструкция

▪ статья Переключатель гирлянд на однопереходном транзисторе. Энциклопедия радиоэлектроники и электротехники

▪ статья Фокус с кружкой и льдом. Секрет фокуса

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:





Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2025