Menu Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Широкополосное согласование. Энциклопедия радиоэлектроники и электротехники

Бесплатная техническая библиотека

Энциклопедия радиоэлектроники и электротехники / Антенны. Измерения, настройка, согласование

Комментарии к статье Комментарии к статье

Некоторые любительские KB диапазоны (160, 80 и 10 метров) имеют широкую относительную полосу частот - почти 10%, и не всякая антенна удовлетворительно работает на всех частотах этих диапазонов. Заменить узкополосную антенну более широкополосной - далеко не простое и не самое дешевое решение проблемы.

Существует и другая возможность существенно расширить рабочую полосу частот узкополосной антенны - с помощью специальным образом спроектированного согласующего устройства. Вопросы создания таких устройств и рассмотрены в публикуемой статье.

Нередко антенная система со своим согласующим устройством (СУ) не перекрывает нужную полосу частот при заданном КСВ. При этом антенна имеет свою полосу, а СУ - свою. И, казалось бы, при последовательном включении суммарная полоса частот (BW) будет меньше. Но учтем, что антенна и СУ, как правило, резонансные устройства. Поэтому BW антенной системы может как сузиться, так и расшириться, все зависит от характера изменения реактивности jX(f) у антенны и СУ.

Вспомним о технике полосовых фильтров - двухконтурный фильтр может иметь более широкую полосу, чем одиночный контур. Как известно, правильно сделанный полосовой фильтр содержит чередующиеся последовательные и параллельные колебательные контуры. У нас один из контуров - антенна (с некоторым приближением так можно считать). Следовательно, в зависимости от того, каков характер изменения jXa от частоты (как у последовательного или как у параллельного LC-контура), надо выбирать характер изменения jXcу(f).

1. Широкополосное согласование параллельным LC контуром в точке питания

Вблизи резонансной частоты эквивалентной схемой полуволнового (λ/2) диполя, питаемого в центре, является обычный последовательный LC-контур. То же относится и к λ/4 GP. Если первый контур (антенна) последовательный, то для образования широкополосного двухконтурного фильтра к нему надо подключить параллельный LC-контур, настроенный на среднюю частоту диапазона согласования. Он присоединяется параллельно питающему кабелю и, соответственно, антенне. К чему это приводит, показано на рис. 1, на примере λ/2 диполя на 28 МГц, параллельно которому подключен параллельный же LC-контур (конденсатор емкостью 500 пФ и катушка индуктивностью 62 нГн).

Широкополосное согласование
(нажмите для увеличения)

Зависимость jX(f) приобретает характерный для широкополосных систем согласования S-образный характер, и при правильной настройке пресекает нулевое значение трижды. Это и есть следствие взаимной компенсации реактивностей антенны и СУ (нашего контура). В результате BW по уровню КСВ<2 расширяется более чем в полтора раза по сравнению с обычным полуволновым диполем.

Зависимость R(f) имеет непривычный вид - на средней частоте (где LC-контур настроен в резонанс и никак не влияет) R соответствует сопротивлению простого диполя. При расстройке в любую сторону от центральной частоты наличие LC-контура приводит к трансформации сопротивлений и повышению суммарного R. В результате зависимость R(f) имеет два максимума, почти симметрично расположенных относительно центральной частоты.

Реактивное сопротивление контурного конденсатора на рабочей частоте обычно лежит в пределах 5...20 Ом (довольно большая емкость), катушка выбирается исходя из условия получения резонанса. Практика показала, что несколько лучшие результаты по BW получаются в случае, если резонансная частота LC-контура несколько выше (на 10.. 15 % от абсолютной полосы BW) средней частоты диапазона. От емкости конденсатора контура зависит расстояние между крайними нулями S кривой на графике jX(f). Ее увеличение приводит к сближению крайних нулей и, соответственно, к сужению полосы. Чрезмерное уменьшение емкости приводит к расширению S-кривой до тех частот, где уже резко падает R, что опять приводит к сужению BW. Оптимальное значение емкости контура легко подобрать с помощью MMANA, ориентируясь на вид S-кривой графика jX(f) и ширину полосы BW на графике КСВ.

Хорошие результаты получаются при использовании такого согласования для λ/4 GR стоящего на земле, при питании кабелем 50 Ом. Возрастание активной части входного сопротивления от 37 Ом в центре до 50.. .60 Ом на краях диапазона обеспечивает два минимума КСВ. На рис. 2 показан пример согласования к/A GP диапазона 80 м (резонанс GP на 3,65 МГц) с параллельным контуром, настроенным на 3,67 МГц при емкости конденсатора контура 7500 пФ.

Широкополосное согласование
(нажмите для увеличения)

КСВ во всем диапазоне 3,5...3,8 МГц не превышает 1,4 с двумя отчетливыми минимумами в CW и SSB DX участках. При уменьшении высоты вертикала до получения резонанса на 3,75 МГц, повышении частоты контура СУ до 3,78 МГц и снижении емкости конденсатора до 5000 пФ становится возможным перекрыть полосу более 500 кГц.

Аналогичным образом λ/4 GP с собственным резонансом на 27,8 МГц с помощью параллельного контура (емкость конденсатора 300 пФ) согласуется в полосе 26...29,7 МГц, охватывающей СВ и любительский диапазоны.

Этим способом можно расширить полосу любой антенны, которая ведет себя на своей резонансной частоте как последовательный контур. К ним относятся почти все антенны, питаемые в разрыве пучности тока (то есть большинство антенн), в том числе и рамки с периметром 1λ.

Отмечу, что для получения оптимальных характеристик желательно, чтобы собственное (без СУ) входное сопротивление Ra антенны на резонансе было несколько ниже волнового сопротивления Zo используемой линии передачи. Отношение Zo/Ra даст величину пикового значения КСВ в центре диапазона. Достигаемое этим способом расширение полосы составляет 1,5...2 раза.

Напряжение на контуре не превышает выходного напряжения передатчика, реактивная мощность контурного конденсатора должна быть не менее мощности передатчика. Контур СУ должен быть настроен на среднюю частоту диапазона до установки на антенну и в дальнейшем в настройке обычно не нуждается. Но подстройка в небольших пределах (растягиванием или сжатием витков контурной катушки) по максимуму BW не повредит.

2. Широкополосное согласование последовательным LC-контуром через А, 4 отрезок линии

Несмотря на все достоинства, у описанного в предыдущем параграфе способа согласования есть недостатки. Во-первых, величина Ra в середине диапазона определяется антенной и не может быть изменена, во-вторых, LC-контур, размещенный в точке питания, не всегда доступен для подстройки (у диполя, например). Описанный ниже способ лишен этих недостатков. Он основывается на любопытном свойстве отрезка линии длиной λ/4: если нагрузить его на последовательный LC-контур, то на входе линии характер зависимости jX(f) будет соответствовать параллельному контуру (выше резонансной частоты jX будет емкостным, а ниже - индуктивным).

Если подключить антенну с характером изменения jX(f), как у последовательного контура, через отрезок линии длиной λ/4, то на конце отрезка получим зависимость jX(f), как у параллельного колебательного контура. Очевидно, что для расширения полосы (то есть образования двухконтурного фильтра) между параллельным контуром (концом λ/4 отрезка линии) и основной питающей линией надо включить последовательный контур, настроенный на среднюю частоту диапазона. В этом способе также можно трансформировать Ra, если волновое сопротивление λ/4 отрезка не равно Ra.

Таким способом удачно согласуются с линией 50 Ом стоящие на земле λ/4 GP. При подключении через отрезок 50-омного кабеля длиной λ/4 сопротивление антенны Ra = 37 Ом повышается на средней частоте до 68 Ом (обеспечивая "горб" КСВ 68/50 = 1,35). Добавление последовательного LC-контура позволяет получить S-образную кривую jX(f) с двумя минимумами КСВ на краях диапазона и расширение BW. Эта схема согласования выглядит так: непосредственно к GP (без СУ) подключен питающий кабель 50 Ом. На расстоянии λ/4 (с учетом коэффициента укорочения используемого кабеля) в разрыв центрального провода кабеля включен последовательный LC-контур (L = 2,15 мкГн, С = 900 пФ), настроенный на среднюю частоту диапазона. Далее к передатчику идет кабель 50 Ом произвольной длины. Вертикал высотой 19,5 м, согласованный таким образом, имеет полосу более 450 кГц с двумя явно выраженными минимумами КСВ на 3,5 и 3,8 МГц.

От емкости конденсатора контура зависит расстояние между крайними нулями S-кривой на графике jX(f). Уменьшение емкости приводит к сближению крайних нулей и, соответственно, к сужению полосы. Чрезмерное увеличение емкости приводит к расширению S-кривой до тех частот, где уже резко падает R, что также приводит к сужению BW. Оптимальное значение конденсатора легко подобрать в MMANA, ориентируясь на вид S-кривой графика jX(f) и ширину полосы ВW на графике КСВ.

К достоинствам этого метода (кроме возможности трансформации Ra) относится доступность контура при настройке. К недостаткам - довольно большая индуктивность катушки контура (реактивное сопротивление на рабочей частоте 100..300 Ом), что требует высокой конструктивной добротности.

Реактивная мощность конденсатора контура должна быть в несколько (в нагруженную добротность контура) раз выше мощности передатчика. Рабочее напряжение конденсатора - во столько же раз выше напряжения передатчика на согласованной нагрузке.

3. Широкополосное согласование вибраторов с гамма- и омега-согласователями

Большинство антенн имеет характер изменения jX(f) такой же, как у последовательного контура. Но большинство - это не все. Часть антенн вблизи резонанса имеет характер изменения jX(f), как у параллельного контура. Прежде всего, это антенны, питаемые не в разрыве вибратора, а параллельно ему, через шлейф, по схеме гамма-и омега-согласования.

Естественно, для образования двухконтурного фильтра в данном случае необходимо последовательно с антенной включить последовательный же LC-контур. В принципе, в антенне с гамма-согласованием он уже имеется - индуктивность шлейфа и включенный последовательно с ней настроечный конденсатор как раз и образуют нужный контур. Но нужный по схеме, а отнюдь не по значениям (для расширения полосы) входящих в него элементов. Длина шлейфа гамма-согласования выбирается из условия получения нужного Ra, а уж его индуктивность - какая получится. Крайне маловероятно, чтобы она совпадала с нужной для обеспечения оптимальной полосы. Поэтому намного проще включить последовательно со шлейфом дополнительную катушку индуктивности, соответственно уменьшив настроечный конденсатор.

Идея такой конструкции была предложена RA9MB. Заземленный GP из трубки диаметром 15 мм и высотой 2,66 м при таком согласовании имеет полосу более 4 МГц и перекрывает диапазоны 12 и 10 м. Трубка гамма-согласования (также диаметром 15 мм) расположена на расстоянии 0,1 м от GP и имеет длину 0,5 м. В точке питания последовательно с кабелем включены конденсатор емкостью 28 пФ и катушка индуктивностью 0,65 мкГн.

Методика проектирования такой антенны следующая:

- Сначала разрабатывается антенна с обычным гамма-согласованием на среднюю частоту диапазона. Длина трубки гамма-согласования выбирается из условия получения Ra, несколько превышающего волновое сопротивление линии передачи Zc. Отношение Ra/Z0 даст значение КСВ на средней частоте. Оно должно быть меньше допустимого.

- Затем последовательно с настроечным конденсатором включается последовательный LC-контур (настроенный на среднюю частоту), обеспечивающий расширение полосы. Увеличение индуктивности этого контура приводит к сужению крайних нулей S-кривой (аналогично тому, как описано выше).

- По достижении нужной полосы два последовательно включенных конденсатора (контурный и настроечный гаммасогласователя) пересчитываются в один.

Таким способом можно получать очень малый КСВ в широкой полосе частот. Заземленный GP высотой 19,7 м (диаметр штыря 40 мм, диаметр трубки согласования 4 мм, ее высота 3,6 м, на расстоянии 0,3 м от GP, в точке питания последовательно с кабелем включены конденсатор 136 пФ и катушка 8 мкГн) имеет КСВ менее 1,25 во всем диапазоне 3,5....3,8 МГц.

Такой же эффект можно получить и на антенне с омега-согласованием. Причем тем же самым способом - включением катушки между последовательным настроечным конденсатором и кабелем питания. Методика проектирования такой антенны в точности совпадает с приведенной выше методикой для гамма-согласования (лишь вместо изменения длины шлейфа надо менять емкость параллельного конденсатора). Параметры контура согласования выбираются как описано, достижимое расширение полосы 1,5...2 раза по сравнению с полосой этой же антенны без контура.

4. Широкополосное согласование антенн с параллельным сосредоточенным элементом

Кроме рассмотренных антенн с гамма- и омега-согласователями, как параллельный колебательный контур ведут себя антенны с согласованием параллельной индуктивностью (hairpin match). Это и понятно - параллельный согласующий элемент образует совместно с реактивностью антенны параллельный колебательный контур, настроенный на рабочую частоту. Здесь для расширения полосы достаточно включить между антенной и кабелем последовательный LC-контур.

Стоящий на земле вертикал высотой 2,37 м и диаметром 10 мм, согласованный таким образом, имеет полосу 3,4 МГц при средней частоте 27,5 МГц. Между вертикалом и землей включена катушка индуктивностью 0,25 мкГн, а между центральным проводником кабеля и вертикалом - последовательный контур с параметрами L= 1,5 мкГн и С = 18 пф.

Еще один тип антенн, которые при резонансе имеют зависимость jX(f), как у параллельного контура, это укороченные вибраторы с катушкой в пучности тока. Линия питания у таких антенн подключается к отводам катушки, чем и обеспечивается согласование. Особенно часто так выполняют укороченные GP - катушка в основании обеспечивает резонанс на нужной частоте, а отвод - согласование с заданным Z0.

Последовательный LC-контур между питающей линией и отводом удлиняющей катушки позволяет намного расширить полосу, что особенно актуально для укороченных антенн, полоса которых принципиально меньше, чем полноразмерных. На рис 3. показан укороченный (высотой всего 13 м) вертикал диапазона 80 м с двумя проводами емкостных нагрузок наверху, согласованный описанным способом.

Широкополосное согласование

Схема согласования приведена на рис. 4. Диаметры мачты - 40 мм, проводов емкостных нагрузок - по 2 мм. Эта очень простая и удобная конструктивно (емкостные нагрузки совмещены с верхним ярусом растяжек мачты) антенна, несмотря на свои небольшие размеры, имеет более чем солидную полосу в 370 кГц (см. рис 3), недостижимую при обычном согласовании даже для полноразмерных антенн! И, что очень практично, имеет два выраженных минимума КСВ по 1,2 как в CW, так и в SSB DX-участках. "Горб" КСВ в центре диапазона, где его значение достигает 1, 8, соответствует мало используемому участку 3,6...3,7 МГц.

Широкополосное согласование

Настройка СУ (рис. 4) ведется по следующей методике.

1. Отключают нижний вывод катушки L1 от земли. Контур L2C1 также временно отключается. Кабель включается между землей и отсоединенным от земли нижним выводом катушки L1.

2. Изменяя индуктивность L1, устанавливают нулевую реактивную составляющую входного сопротивления антенны на средней частоте диапазона. КСВ при этом будет высоким, но на данном этапе это неважно.

3. Восстанавливают соединение нижнего вывода катушки L1 с землей. Подключив кабель к отводу L1 и перемещая отвод, добиваются получения активной части сопротивления около 80 Ом (ВЧ мостом). На реактивную часть при этом (будет индуктивная составляющая) внимания не обращают. Если ВЧ моста нет, берут отвод примерно от 1 /4 части витков катушки. Но тогда придется делать пункт 5.

4. Подключают последовательный контур L2C1 (предварительно настроенный на среднюю частоту диапазона). Изменяя емкость конденсатора С1, добиваются получения симметричной S-образной кривой реактивной части входного сопротивления (или, что то же самое, графика КСВ с двумя минимумами).

5. Если значение КСВ на частоте 3,65 МГц выше 2 или ниже 1,5 - неправильно установлен отвод катушки L1. Переместите его немного и повторите пункт 4. И так несколько раз, до тех пор, пока зависимость КСВ от частоты не станет такой, как на рис 3.

По сути дела, это - процедура настройки обычного двухконтурного полосового фильтра. Если же для вас важен именно участок 3,6...3,7 МГц, то можно либо сдвинуть крайние нули S-кривой, увеличив индуктивность L2 и, соответственно, уменьшив емкость С1 (зто снизит "горб" КСВ в середине, но одновременно несколько увеличит КСВ на краях), либо использовать антенну, аналогичную описанной, но с меньшими размерами. Так, при высоте GP всего в 8,2 м удается получить полосу более 150 кГц и два минимума КСВ на частотах 3,525 и 3,625 МГц.

5. Расширение полосы нерезонансных вибраторов с гамма- и омега- согласователями

Если длина GP заметно отличается от Х/4 (а симметричного диполя - от Х/2), то при гамма- и омега согласованиях значительно уменьшается емкость последовательного конденсатора согласования. Соответственно растет его реактивное сопротивление, повышая добротность СУ и сужая полосу антенны.

Очевидно решение: для увеличения емкости последовательного конденсатора надо снизить индуктивность шунта. Так как его длина фиксирована, сделать это можно только заметным увеличением диаметра. Непосредственное увеличение диаметра неудобно конструктивно, поэтому поступают так же, как и в диполе Надененко - заменяют толстую трубу шлейфа набором тонких параллельных проводов. Располагают их по кругу около вибратора, как показано на рис. 5.

Широкополосное согласование

В диапазоне 14 МГц заземленный укороченный GP высотой 3,5 м и диаметром 30 мм при обычном гамма-согласовании шлейфом из трубки диаметром 12 мм имеет полосу около 200 кГц. При замене трубки на "юбку" из четырех проводов диаметром 2 мм, расположенных вокруг вибратора на расстоянии 0,2 м, он имеет полосу более 300 кГц.

У удлиненных GP с высотой более Х/4 при использовании "юбки" также в полтора-два раза расширяется полоса. Практически все антенны средневолновых радиовещательных станций выполняются как заземленные ажурные мачты с "толстым" шунтом-"юбкой", провода которой расположены вокруг мачты.

Файл модели существующей антенны радиовещательной станции мощностью более мегаватта, согласованной описанным способом, вы можете найти на странице qsl.net/dl2kq/mmana/4-3-12.htm (самый последний в списке MW-Broadcasting.maa). На этой же странице приведены файлы моделей (с подробными размерами, номиналами и характеристиками) всех антенн, упоминавшихся в этой статье, и еще множество других.

Автор: И.Гончаренко (DL2KQ - EU1TT), г.Бонн, Германия

Смотрите другие статьи раздела Антенны. Измерения, настройка, согласование.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

<< Назад

Последние новости науки и техники, новинки электроники:

Питомцы как стимулятор разума 06.10.2025

Помимо эмоциональной поддержки, домашние питомцы могут оказывать заметное воздействие на когнитивные процессы, особенно у пожилых людей. Новое масштабное исследование показало, что общение с кошками и собаками не просто улучшает настроение - оно действительно способствует замедлению возрастного снижения умственных способностей. Работа проводилась в рамках проекта Survey of Health, Ageing and Retirement in Europe (SHARE), охватывающего период с 2004 по 2022 год. В исследовании приняли участие тысячи европейцев старше 50 лет. Анализ показал, что владельцы домашних животных демонстрируют более устойчивые когнитивные функции по сравнению с теми, кто не держит питомцев. Особенно выражен эффект оказался у владельцев кошек и собак. Согласно данным ученых, владельцы собак дольше сохраняют хорошую память, в то время как хозяева кошек медленнее теряют способность к быстрому речевому взаимодействию. Исследователи связывают это с тем, что ежедневное взаимодействие с животными требует внимани ...>>

Мини-ПК ExpertCenter PN54-S1 06.10.2025

Компания ASUSTeK Computer презентовала новый мини-компьютер ASUS ExpertCenter PN54-S1. Устройство ориентировано на пользователей, которым важно сочетание производительности, энергоэффективности и универсальности - от офисных задач до мультимедийных проектов. В основе ExpertCenter PN54-S1 лежит современная аппаратная платформа AMD Hawk Point, использующая архитектуру Zen 4. Это поколение чипов отличается улучшенным управлением энергопотреблением и повышенной вычислительной мощностью. Новинка доступна в конфигурациях с процессорами Ryzen 7260, Ryzen 5220 и Ryzen 5210, представленных AMD в начале 2025 года. Таким образом, устройство охватывает широкий диапазон задач - от базовых офисных до ресурсоемких вычислений. Корпус мини-ПК выполнен из прочного алюминия и имеет размеры 130&#215;130&#215;34 мм, что делает его практически незаметным на рабочем столе или за монитором. Несмотря на компактность, внутренняя компоновка позволяет установить два модуля оперативной памяти SO-DIMM ...>>

Глазные капли, возвращающие молодость зрению 05.10.2025

С возрастом человеческий глаз постепенно теряет способность четко видеть на близком расстоянии - развивается пресбиопия, или возрастная дальнозоркость. Этот естественный процесс связан с утратой эластичности хрусталика и ослаблением цилиарной мышцы, отвечающей за фокусировку. Миллионы людей по всему миру сталкиваются с необходимостью носить очки для чтения или прибегают к хирургическим методам коррекции. Однако исследователи из Центра передовых исследований пресбиопии в Буэнос-Айресе представили решение, которое может стать удобной и неинвазивной альтернативой - специальные глазные капли, способные улучшать зрение на длительный срок. Разработку возглавила Джованна Беноцци, директор Центра. По ее словам, цель исследования состояла в том, чтобы предоставить пациентам с пресбиопией эффективный и безопасный способ коррекции зрения без хирургического вмешательства. Новые капли, созданные на основе пилокарпина и диклофенака, показали убедительные результаты: уже через час после первого пр ...>>

Случайная новость из Архива

Сополимеры в 5 раз увеличат емкость HDD 28.11.2012

Емкость компьютерного жесткого диска может увеличиться в пять раз благодаря процессам, разработанным химиками и инженерами Техасского Университета в Остине. Для этого исследователи применяют технику, которая основана на самоорганизации веществ, известных как блок-сополимеры. Результаты описаны в статье журнала Science. Там также уделяется внимание реальным тестам в сотрудничестве с HGST, одним из ведущих новаторов в мире дисков.

"Последние несколько десятилетий в мире наблюдался устойчивый, экспоненциальный рост количества информации, которая может быть сохранена в памяти электронного устройства, но предел уже достигнут, и мы натыкаемся на физические ограничения", - рассказал С. Грант Уилсон, профессор химии и биохимии в Колледже инженерных и естественных наук. - "Вся мировая отрасль сейчас не может выбраться из предела в один терабит информации на квадратный дюйм", - сказал Уилсон. - Если мы с помощью существующего метода попросту сдвинем точки еще ближе друг к другу, они начнут время от времени самопроизвольно переключаться, и накопительные свойства жестких дисков будут утеряны. Тогда случится беда. Можете себе представить, что в один прекрасный день ваш банковский счет просто спонтанно изменится?"

При современных способах производства нули и единицы записываются в виде магнитных точек на непрерывной поверхности металла. Чем ближе друг к другу точки, тем больше информации можно там сохранить. Но наступает предел насыщения. Точки стали располагаться настолько близко, что любое дальнейшее увеличение их числа в непосредственной близости друг от друга, заставит их начать воздействовать на магнитные поля соседей и сделать их нестабильными. Однако есть один важный фактор: если точки надежно изолированы друг от друга, они могут быть сдвинуты значительно ближе друг к другу без всякой дестабилизации.

Группе профессоров Уилсона и Эллисона удалось разработать особые самоорганизующиеся сополимеры, которыми покрывают пластины жесткого диска. В результате на его поверхности получается причудливый рисунок тончайших дорожек сополимера, который и экранирует магнитные точки друг от друга. При этом плотность точек увеличивается пятикратно. Команда добилась большого прогресса по ряду направлений. При правильно подобранной температуре и соответствующих условиях исследователи сумели синтезировать блок сополимеров с необходимыми параметрами, которые самостоятельно формируют изолирующие элементы из наименьших точек в мире. И что поразительно, происходит это за какие-то 30 секунд, что также является рекордом.

Другие интересные новости:

▪ Автобус над дорогой

▪ В Европе USB Type-C стал стандартным зарядным разъемом для смартфонов

▪ Из черных дыр могут быть выходы

▪ Смешанная реальность для автомобилей

▪ Умный антибактериальный водонагреватель Xiaomi Mijia Smart Kitchen Treasure 7L S1

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Блоки питания. Подборка статей

▪ статья Ракета класса S6A. Советы моделисту

▪ статья Почему королева Виктория дала одной из коров на ферме при дворе имя своей дочери? Подробный ответ

▪ статья Врач общей практики (семейный врач). Должностная инструкция

▪ статья Цветомузыкальная установка с фазоимпульсным управлением. Энциклопедия радиоэлектроники и электротехники

▪ статья Многоканальное усиление в УМЗЧ с крайне глубокой ООС. Энциклопедия радиоэлектроники и электротехники

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:




Комментарии к статье:

Гость
Вопрос к специалистам по гамма согласованию. Можно ли для увеличении полосы антенны расположить юбку не по центру вертикала, а сбоку? То есть, чтобы вертикал отходил параллельно толстому шлейфу? [?] [cry]


Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2025