Menu Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Индикатор КСВ-метра. Энциклопедия радиоэлектроники и электротехники

Бесплатная техническая библиотека

Энциклопедия радиоэлектроники и электротехники / Гражданская радиосвязь

Комментарии к статье Комментарии к статье

При всем разнообразии схем и конструкций КСВ-метров структура у них одна: имеются датчики прямой и отраженной волн с детекторами на выходе. Полученные с детекторов постоянные напряжения Uпад и Uотр пропорциональные амплитудам падающей и отраженной волн, подаются на индикатор. В простейшем (и самом распространенном) случае в индикаторе имеется переключатель Uпад, Uотр и стрелочный прибор с регулятором, как показано на рис.1. Диоды VD1, VD2 и конденсаторы С1, С2 образуют детекторы Uпад и Uотр .

Индикатор КСВ-метра

Как пользоваться таким КСВ-метром, знают все. При измерении надо сделать три нехитрые операции:

  • поставить переключатель S1 в положение "Uпад";
  • переменным резистором R1 установить стрелку на последнее деление шкалы стрелочного прибора Р1;
  • установить переключатель S1 в положение "U0TP", и по шкале прибора Р1 считать значение КСВ.

Шкала измерительного прибора Р1 градуируется на основе известной формулы:

Однако работа с таким индикатором не очень удобна - необходимо делать много операций при каждом измерении. Кроме того, нужен хороший и не дешевый стрелочный измерительный прибор со шкалой, которую нужно еще отградуировать, разобрав прибор.

Попробуем задачу индикации решить по-иному. Для этого в формуле (1) разделим и числитель и знаменатель на Uпад- В результате получим

Теперь для определения КСВ достаточно знать лишь отношение Uотр/Uпад, а не абсолютные их величины. Чем можно поделить напряжение? Резистивным делителем, разумеется. Вот и давайте включим переменный резистор делителем, как показано на рис. 2.

Индикатор КСВ-метра

Как пользоваться таким индикатором? Инструкция не отличается чрезмерной сложностью: надо вращать ручку переменного резистора R1 до тех пор, пока прибор не покажет нуль, и в этот момент считать значение КСВ со шкалы резистоpa. Осталась лишь одна операция вместо трех. И переключателя нет. Удобнее, проще, быстрее.

К деталям такого измерителя КСВ предъявляются два требования (они же удобства):

1. Стрелочный прибор должен быть не измерительным (с градуированной шкалой), а индикаторным (с нулем посредине шкапы и единственной отметкой в этом месте). Другими словами, прибором может служить дешевый индикатор, например, индикатор уровня записи старого магнитофона, только придется подвернуть крепления, чтобы сдвинуть стрелку в середину шкалы.

2. Переменный резистор R1 должен быть со шкалой, годятся, например, штрихи, нанесенные несмываемым фломастером-маркером на панели, на которой закреплен резистор R1 с ручкой в виде "клювика".

Как работает индикатор? Ток через прибор Р1 равен нулю в единственном случае - когда на обоих выводах прибора одинаковые напряжения. На левом выводе всегда присутствует напряжение Uотр. А на правом выводе - напряжение, снятое сдвижка переменного резистора и равное U0TP. потому что мы установили стрелку прибора на нуль. Иначе говоря, мы переменным резистором поделили Uпадтак, чтобы получилась величина, равная U0TP. Очевидно, что при этом угол поворота оси переменного резистора R1 (если он группы "А") пропорционален отношению U0TP/Uпад, и в соответствии с формулой (2) шкала резистора может быть проградуирована непосредственно в КСВ.

В измерителях КСВ, собранных по традиционной схеме, при малой мощности приходится уменьшать сопротивление потенциометра почти до нуля. Сопротивление нагрузки детекторов при этом получается низким, что ухудшает линейность. В описываемом же индикаторе сопротивление нагрузки детекторов неизменно и велико, что обеспечивает лучшую линейность детектирования.

Кроме того, в отличие от измерителей, собранных по обычной схеме, переменный резистор R1 не вносит дополнительных погрешностей, поскольку в момент измерения ток через него равен нулю, и поэтому прибор Р1 виртуально отсутствует в схеме (нуль тока - это и есть отсутствие влияния на остальную часть устройства, как будто вместо прибора включен изолятор).

При работе с большими мощностями есть смысл защитить прибор Р1 от перегрузки парой встречно-параллельно включенных кремниевых диодов.

Для градуировки шкалы переменного резистора R1 (полагая, что детекторы напряжений Uотр и Uпад линейные) достаточно омметра. Измеряя сопротивления между нижним и средним (по схеме) выводом резистора R1 (предварительно отключив их от остальной части устройства), размечают шкалу резистора. Это можно сделать двумя способами:

1. Рисуется обычная линейная шкала, как у большинства КСВ-метров. При сопротивлении резистора R1, равном 10 кОм, градуировочные точки шкалы наносятся в соответствии с табл. 1.

Индикатор КСВ-метра

2. Наносится нетрадиционная, но более удобная в практике нелинейная шкала в соответствии с табл. 2.

Индикатор КСВ-метра

В зависимости от группы переменного резистора вид шкалы соответственно изменяется. Для более точного отсчета при измерении больших КСВ лучше применить резистор группы "В", а для привычной шкалы - группы "А".

Если у вас имеется переменный резистор с сопротивлением, отличающимся от 10 кОм, то надо соответственно изменить сопротивление резистора R2, чтобы детекторы имели равную нагрузку, и пересчитать разметку шкалы по формуле

где Rтек - текущее значение сопротивления от земли до движка; R1 - номинальное сопротивление переменного резистора; КСВ - значение КСВ, соответствующее Rтек.

Для измерений малых КСВ удобно сделать растянутую шкалу, включая последовательно с верхним выводом резистора R1 дополнительный резистор R3, замыкаемый переключателем при измерениях больших значений КСВ. Значения КСВ можно получить по формуле (3), подставляя в нее вместо R1 сумму (R1+R3). Так, при R3 = R1 = 10 кОм растянутая шкала R1 будет иметь градуировку в соответствии с табл. 3. Эту градуировку, помимо основной, полезно также нанести на шкалу прибора.

Индикатор КСВ-метра

Схему измерителя КСВ удается еще более упростить, вообще отказавшись от стрелочного прибора. Нам ведь, по сути, нужен лишь индикатор нуля. А его можно сделать на светодиоде

Современные красные светодиоды вполне заметно светятся уже при токе 20...30 мкА. Прямое напряжение на диоде при этом составляет 1,58..1,62 В. Если последовательно со светодиодом включить (в прямом направлении) один гальванический элемент на 1,5 В, то напряжение зажигания светодиода составит всего несколько десятков милливольт. Дело в том, что это только название такое: "полуторавольтовый элемент". А на самом деле напряжение на холостом ходу, практически равное ЭДС, у свежих элементов составляет 1,58.. 1,6 В.

Таким образом, светодиод с последовательно включенным элементом будет загораться при напряжении в несколько десятков мВ и токе 20..30 мкА - чем не индикатор нуля?

Заменив им стрелочный прибор, получим устройство, схема которого показана на рис. 3. Инструкция по пользованию измерителем по-прежнему состоит из одного пункта: вращая ручку переменного резистора R1, замечают момент появления свечения светодиода и считывают значение КСВ со шкалы резистора.

Индикатор КСВ-метра

Конечно, точность измерения при использовании светодиода (рис. 3) пониже, чем у измерителя со стрелочным индикатором (см. рис. 2), особенно при низких мощностях, все же светодиод - это не стрелочный прибор. Но привлекает предельная простота и дешевизна устройства. К тому же в большинстве случаев при настройке антенн высокая точность измерения КСВ и не требуется.

В конструкции надо предусмотреть светозащитный козырек над светодиодом, потому что последний хотя и загорается при токе, измеряемом микроамперами, но, естественно, не ярко. А при ярком солнечном свете это создает проблемы.

Отдельный выключатель элемента питания не нужен - при отсутствии сигналов с выходов детекторов одного элемента не хватит, чтобы, кроме светодиода, открыть еще и диод VD2, поэтому устройство тока не потребляет.

Пользоваться измерителями КСВ, собранными по схемам рис. 2 и рис. 3, при настройке антенн намного удобнее, чем традиционными. Причин две: проще процесс измерения (одна операция против трех); направление движения стрелки Р1 (для рис. 2) или направление изменения яркости свечения (для рис. 3) однозначно указывает направление изменения КСВ.

Возразят - в обычном индикаторе (см. рис. 1) тоже можно ориентироваться на снижение напряжения Uотр. Увы, далеко не всегда. Допустим, Uотр снижается. Но Uпад может уменьшится еще резче, чем Uотр (например, в случае, когда нагрузка для передатчика сильно рассогласована), а это значит, что КСВ возрос несмотря на уменьшение Uотр. Просто снижение Uотр еще ни о чем не говорит. Надо сравнивать с Uпад. В обычном индикаторе это сравнение надо делать вручную, каждый раз щелкая переключателем и заново калибруя индикатор. В описываемом же устройстве сравнение Uотр и Uпад происходит автоматически - на переменном резисторе делителя и индикаторе нуля.

Конечно, такой индикатор не очень подходит для непосредственного встраивания в трансивер или в усилитель мощности. Но в отдельном КСВ-метре, предназначенном именно для антенных измерений, он заметно удобнее традиционного.

Автор: Игорь Гончаренко (DL2KQ - EU1TT), г.Бонн, Германия

Смотрите другие статьи раздела Гражданская радиосвязь.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

<< Назад

Последние новости науки и техники, новинки электроники:

Особенности почек помогают легче переносить высоту 18.01.2025

Высокогорные регионы всегда привлекали внимание исследователей, изучающих, как человек адаптируется к жизни в условиях разреженного воздуха. Недавнее исследование группы ученых из Университета Маунт-Ройал в Канаде, возглавляемое доктором Тревором Деем, проливает свет на важную роль почек в акклиматизации к большим высотам. Работы канадских ученых объясняют, почему представители народности шерпа, которые веками живут в высокогорных районах Тибета, значительно лучше переносят высокогорье. В своем исследовании ученые наблюдали за дыханием и составом крови участников во время их подъема на высоту 4300 метров в Гималаях, в Непале. Эксперимент проводился с участием двух групп: одна состояла из жителей низменностей, не привыкших к горной среде, а другая - из шерпов, чей организм приспособлен к жизни на большой высоте. Основное различие между этими группами было в том, как их организмы реагировали на дефицит кислорода в воздухе. У шерпов наблюдалась более быстрая и масштабная адаптация к ...>>

Производство электричества с помощью термоядерного синтеза 18.01.2025

Американская компания Commonwealth Fusion Systems (CFS) нацелена на создание первой в мире термоядерной электростанции, способной подключаться к электрической сети. Этот амбициозный проект, известный как ARC (Affordable, Robust, Compact), будет построен вблизи города Ричмонд, штат Вирджиния. В соответствии с планами, новая электростанция сможет производить до 400 мегаватт чистой энергии, что вполне хватит для обеспечения электричеством 150 тысяч домохозяйств. Прогнозируется, что станция начнет работу в 2030-х годах. Принцип работы термоядерной электростанции основан на процессе термоядерного синтеза, который происходит в ядре звезд. В отличие от традиционной атомной энергетики, где используется деление ядер атомов с образованием радиоактивных отходов, термоядерный синтез создает в качестве побочного продукта безопасный гелий. Для того чтобы удерживать плазму с температурой свыше 100 миллионов градусов Цельсия, установка будет использовать мощные магнитные поля. Тем не менее, н ...>>

Экологическая защита для овощей и фруктов 17.01.2025

Исследователи из женского колледжа Шри Нараяна в Колламе, Керала, Индия, разработали инновационный способ продления свежести фруктов и овощей. Группа под руководством Пурнимы Виджаян предложила использовать съедобное покрытие, созданное на основе целлюлозных нановолокон (CNF), полученных из луковой шелухи. Этот подход не только продлевает срок хранения продуктов, но и способствует их безопасности благодаря включению нанокуркумина, известного своими антимикробными свойствами. Основным компонентом покрытия являются CNF, полученные из переработанных отходов лука. Эти нановолокна соединяются с синтетическим биополимером, который улучшает структуру покрытия, устраняя проблемы с водостойкостью и термической стабильностью, ранее свойственные материалам на основе CNF. Кроме того, добавление нанокуркумина усиливает антимикробные свойства покрытия, делая его особенно эффективным для предотвращения порчи. Для проверки эффективности этой разработки ученые провели эксперимент с апельсинами. П ...>>

Случайная новость из Архива

Nvidia GeForce GTX 690 - самая быстрая видеокарта 09.05.2012

Nvidia объявила о выпуске GeForce GTX 690 - новой самой быстрой в мире видеокарты, согласно внутренним исследованиям компании.

GeForce GTX 690 оснащена двумя процессорами на 28-нм архитектуре последнего поколения Kepler, имеет алюминиевую раму и вентилятор, корпус которого выполнен из магниевого сплава для повышенной теплоотдачи.

В общей сложности видеокарта содержит 3072 ядра и укомплектована 4 ГБ видеопамяти GDDR5 с 512-битным интерфейсом.
Базовая частота графического ядра равна 915 МГц, технология Nvidia GPU Boost позволяет повысить это значение автоматически до 1019 МГц. В свою очередь память работает на частоте 6000 МГц. Энергопотребление карты составляет 300 Вт.

Поставки видеокарт в ограниченном объеме начнутся 3 мая, в полном объеме - 7 мая. Карты планируют выпустить Asustek, EVGA, Gainward, Galaxy, Gigabyte, Inno3D, MSI, Palit и Zotac. Рекомендуемая стоимость - $999.

Другие интересные новости:

▪ Прозрачный транзистор

▪ Робот для проверки энергетических и перерабатывающих установок

▪ Жесткие диски HGST Endurastar J4K320 для автомобильной электроники

▪ Умеренный шум тоже вреден

▪ Молния бьет в небо

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Охрана и безопасность. Подборка статей

▪ статья Джентльмены предпочитают блондинок. Крылатое выражение

▪ статья Кто были первые астрономы? Подробный ответ

▪ статья Соблюдение режима труда и отдыха

▪ статья Автоответчик в телефонных аппаратах с АОН. Энциклопедия радиоэлектроники и электротехники

▪ статья Магнитная инфекция. Физический эксперимент

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:




Комментарии к статье:

Михаил
Очень просто и понятно, огромное спасибо за публикацию.


Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2025