Menu Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Генератор двух образцовых частот для синтезаторов вещательных передатчиков. Энциклопедия радиоэлектроники и электротехники

Бесплатная техническая библиотека

Энциклопедия радиоэлектроники и электротехники / Гражданская радиосвязь

Комментарии к статье Комментарии к статье

Этот генератор предназначен для формирования сигналов двух переключаемых стабильных частот. В частности, он может быть использован в составе синтезаторов для индивидуального радиовещания при формировании как средневолновой вещательной сетки с шагом 9 кГц, так и коротковолновой с шагом 5 кГц. Но этим область его применения не ограничивается. Возможность использовать интегральные генераторы и кварцевые резонаторы на различные частоты совместно с широкими пределами изменения коэффициентов деления позволяет использовать эту конструкцию в других устройствах.

Относительная стабильность частоты генератора 0,5·10-6 оС-1 в интервале температуры от -10 до +60 оС обеспечивается термокомпенсированным кварцевым генератором ГК321-ТК-К-9М-5В [1]. Предусмотрена возможность заменить его обычным кварцевым генератором на логических элементах. Однако стабильность частоты в этом случае будет хуже.

В генераторе имеется делитель частоты с переменным коэффициентом деления, задаваемым двумя переключаемыми наборами перемычек, соответствующими двум значениям выходной может быть выбран любым четным в интервале от 2 до 512, второй - любым, кратным 4, в интервале от 4 до 1024. Коэффициент деления (выходную частоту) выбирают переключателем на два положения.

Схема генератора изображена на рис.1. Интегральный термокомпенсированный кварцевый генератор G1 (ГК321-ТК-К-9М-5В) включен по схеме, рекомендованной предприятием-изго-товителем. Дополнительно в цепи его питания установлен развязывающий фильтр из дросселя L1 и конденсаторов C1 и C5. Если перемычка S1 установлена в положение 2-3, сигнал генератора поступает на буферный усилитель на логическом элементе 3И-НЕ DD1.3, включенном инвертором.

Генератор двух образцовых частот для синтезаторов вещательных передатчиков
Рис. 1 (нажмите для увеличения)

Альтернативный кварцевый генератор выполнен на логических элементах DD1.1 и DD1.2 по схеме несимметричного мультивибратора с кварцевым резонатором в цепи обратной связи. Во втором плече мультивибратора установлен простейший ФНЧ R4C7 с частотой среза, равной удвоенной частоте кварцевого резонатора, который предотвращает возбуждение этого резонатора на гармониках основной частоты. При использовании кварцевых резонаторов на другие частоты емкость конденсатора фильтра C7 должна быть изменена в обратной пропорции. Например, для кварцевого резонатора на частоту 4,5 МГц необходим конденсатор емкостью 30 пФ.

Программируемый делитель частоты выполнен на двух микросхемах параллельных синхронных двоичных счетчиков 533ИЕ10 (DD4, DD5) и двух триггерах микросхемы 533TM2 (DD3). По переполнению счетчика DD5 на его выходе переноса CO устанавливается высокий логический уровень, который приходит на вход (выв. 13) элемента DD2.1. Сигнал с выхода старшего разряда счетчика DD4 (выв. 11), поступающий на входы (выв. 1 и 2) элемента DD2.1, предотвращает десинхронизацию (накопление задержки) спадающего перепада импульса переноса, что улучшает стабильность временного положения нарастающих перепадов импульсов на выходе этого элемента и, как следствие, снижает фазовый шум выходного сигнала генератора.

Импульс с выхода элемента DD2.1 поступает на входы параллельной загрузки L счетчиков DD4 и DD5 и разрешает запись в них кодов, заранее установленных наборами перемычек S2 и S3. По очередному тактовому импульсу происходит загрузка кодов в счетчик, дальнейший счет начинается с загруженного числа.

К примеру, если на все входы D счетчика поданы лог. 1 (высокий уровень), то в него будет записано число 255 и досчитать до переполнения ему останется лишь единицу. В этом случае коэффициент деления получится равным 256 - 255 = 1. Логические уровни на контактах 1-4 групп перемычек S2 и S3 при различных положениях переключателя SA1 приведены в табл. 1. Устанавливая перемычки между этими контактами и контактами 5-8, можно получить комбинации уровней на входах 1, 2, 4, 8 микросхем DD4 и DD5, соответствующие любым числам X от 0 до 255. Коэффициент деления получится равным N = 256 - X.

Таблица 1

Положение SA1 Логический уровень на контактах S2, S3
1 2 3 4
F1 В (1) Н (0) В (1) Н (0)
F2 В (1) В (1) Н (0) Н (0)

На выходе делителя частоты на счетчиках DD4 и DD5 имеется дополнительный двухразрядный двоичный счетчик на D-триггерах DD3.1 и DD3.2, который увеличивает общий коэффициент деления в два или четыре раза. Если переключатель SA1 находится в положении F1 логический уровень на входах (выв. 10, 11) элемента DD2.3 низкий и сигнал с выхода триггера DD3.2 на выход F2 не проходит. В то же время уровень на входах (выв. 3, 4) элемента DD2.2 высокий, поэтому на выход F1 проходят импульсы со скважностью 2 с выхода триггера DD3.1. Они следуют с частотой F1 = Fкв/((256 - X1) - 2), где FKB - частота кварцевого генератора; Х1 - число, установленное на входах D счетчиков при переключателе SA1 в положении F1.

При переводе переключателя SA1 в положение F2 импульсы на выходе элемента DD2.2 прекратятся, а на выходе элемента DD2.3 появятся и будут следовать с частотой F2 = Fкв/((256-X2) · 4), где Х2 - число на входах D счетчиков при положении F2 переключателя. На выходе F3 независимо от положения переключателя присутствуют короткие (длительностью в один период колебаний тактового генератора) импульсы. Частота их следования меньше частоты кварцевого генератора в число раз, равное установленному в данный момент коэффициенту деления частоты счетчиком на микросхемах DD4 и DD5.

Допустим, предполагается использовать описываемый генератор в качестве источника образцовой частоты 45 кГц для синтезатора, описанного в [2]. В этом случае частоту кварцевого генератора 9000 кГц нужно поделить в 9000/45 = 200 раз. С учетом деления на четыре триггерами микросхемы DD3 получим, что коэффициент деления частоты счетчиком на микросхемах DD4 и DD5 должен быть равен 200/4 = 50. Значит, при каждом переполнении необходимо записывать в его микросхемы число 256 - 50 = 20610 = 11011102. Для этого необходимо установить перемычки в соответствии с табл. 2. Так как переключать коэффициент деления в данном случае не требуется, для установки перемычек не использованы контакты 2 и 3, логические уровни на которых зависят от положения переключателя SA1. Переключаться будут лишь выходы генератора, причем частота импульсов на выходе F1 будет равна 90 кГц, а на выходе F2 - 45 кГц.

Таблица 2

Код 206 1 1 0 0 1 1 1 0
Перемычки 8-1 7-1 6-4 5-4 8-1 7-1 6-1 5-4
S3 S2

Если необходимо запрограммировать генератор на получение двух значений частоты, например, 10 и 36 кГц (это может потребоваться для создания синтезатора частоты с шагом сетки 5 и 9 кГц), то более низкую частоту целесообразно формировать на выходе F2, имеющем дополнительный делитель на четыре, а более высокую - на выходе F1 с делителем на два.

Для F1 = 36 кГц общий коэффициент деления 9000/36 = 250, а без дополнительного деления на два - 250/2 = 125. Число, которое следует записывать в счетчик при переполнении, - 256 - 125 = 13110 = 100000112. Для F2 = 10 кГц общий коэффициент деления 9000/10=900, а без дополнительного деления на четыре - 900/4 = 225. Число, которое следует записывать в счетчик при переполнении, - 256 - 225 = 3110 = 000111112. Положения, в которые в рассматриваемом случае нужно установить перемычки наборов S2 и S3, показаны в табл.3. Именно в этих положениях они изображены и выделены цветом на схеме рис. 1.

Таблица 3

Код 131 1 0 0 0 0 0 1 1
31 0 0 0 1 1 1 1 1
Перемычки 8-3 7-4 6-4 5-2 8-2 7-2 6-1 5-1
S3 S2

Если применен кварцевый генератор на другую частоту (она может достигать 20 МГц) или необходимо получить на выходах иные значения частоты, то расчеты, аналогичные приведенным выше, придется произвести самостоятельно и установить перемычки в соответствии с их результатами. При необходимости получить более двух значений выходной частоты и оперативно переключать их можно, применив вместо наборов перемычек два кодовых переключателя на 16 положений каждый.

Все детали генератора смонтированы на двусторонней печатной плате (рис. 2) размерами 90x35 мм из фольгированного стеклотекстолита толщиной 1,5 мм, изготовленной по технологии с металлизированными отверстиями. Если металлизировать их не представляется возможным, то придется выводы деталей пропаивать с обеих сторон, а в переходные отверстия впаивать отрезки луженого провода.

Генератор двух образцовых частот для синтезаторов вещательных передатчиков
Рис. 2

Расположение деталей на плате показано на рис. 3. При использовании термокомпенсированного кварцевого генератора G1 элементы ZQ1, С7, С8, С11, R2 и R4 на нее не монтируют. Кроме того, необходимо установить две дополнительные перемычки: одну - между контактными площадками, предназначенными для конденсатора C7, а другую - между левыми по рис. 3 контактными площадками для резисторов R2 и R4, Перемычку S1 устанавливают в положение 2-3.

Генератор двух образцовых частот для синтезаторов вещательных передатчиков
Рис. 3

Если будет использоваться генератор на кварцевом резонаторе ZQ1 и логических элементах DD1.1 и DD1.2, то на плату не монтируют генератор G1, дроссель L1, конденсатор С5 и резисторы R1 и R3, а перемычку S1 устанавливают в положение 1-2. Для выводов кварцевого резонатора предусмотрены две пары контактных площадок, которые используют в зависимости от его размеров. Сам резонатор крепят на плате петлей из луженого провода диаметром 0,6...0,7 мм, на который надета тонкая трубка из кембрика, полихлорвинила или фторопласта. Петлю натягивают и впаивают ее концы в имеющиеся на плате отверстия. Под кварцевый резонатор в металлическом корпусе необходимо подложить изолирующую прокладку из стеклотекстолита или толстого картона. Кварцевый резонатор в стеклянном баллоне следует перед установкой обмотать тремя-четырьмя слоями лакоткани.

Плата рассчитана на установку резисторов МЛТ или C2-23. Конденсаторы (за исключением C10) - К10-17-1б. Оксидный конденсатор C10 - К53-18 с аксиальными выводами, который можно заменить на К50-35 с выводами в одну сторону или аналогичный импортный. Для минусового вывода конденсатора с таким расположением выводов на плате имеется дополнительное отверстие. Диод 2Д212Б можно заменить любым кремниевым с допустимым прямым током не менее 500 мА. Вместо интегрального стабилизатора КР142ЕН5А подойдет импортный 7805. Дроссель L1 - ДМ-0,1. Выводы цифровых микросхем перед их установкой на плату необходимо отформовать согласно рис. 4 с помощью пинцета, тонких длинногубцев или специального приспособления.

Генератор двух образцовых частот для синтезаторов вещательных передатчиков
Рис. 4

В случае использования интегрального кварцевого генератора необходимо точно подобрать значение корректирующего сопротивления, образованного последовательным соединением резисторов R1 и R3. Оно должно соответствовать значению, указанному в паспорте конкретного экземпляра генератора. Точную установку частоты производят по частотомеру путем подборки этих резисторов при температуре 20 оС.

Если используются кварцевый резонатор и генератор на логических элементах, точную частоту генерации устанавливают подборкой конденсаторов C8 и C11. Подстроечные резисторы и конденсаторы специально не применяются, что исключает влияние на частоту нестабильности их подвижных контактов и повышает надежность работы генератора.

Предлагаемая универсальная конструкция открывает возможность собрать и отладить синтезатор (для которого предназначен описанный генератор) с любым имеющимся кварцевым резонатором, после чего заказать высокостабильный интегральный генератор на точную частоту и установить его на той же плате.

Литература

  1. Термокомпенсированные кварцевые генераторы ГК321-ТК-К - URL: bmg-quartz.ru/gk321_tk_k.html.
  2. Комаров С. Средневолновый радиовещательный синтезатор частоты. - Радио, 2012, № 9, с. 19-23; № 10, с. 21-23.

Автор: С. Комаров

Смотрите другие статьи раздела Гражданская радиосвязь.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

<< Назад

Последние новости науки и техники, новинки электроники:

Оптимальная продолжительность сна 12.11.2025

Сон играет ключевую роль в поддержании здоровья, когнитивных функций и общего самочувствия. Несмотря на широко распространенный стереотип о восьмичасовом сне, последние исследования показывают, что оптимальная продолжительность сна для большинства здоровых взрослых ближе к семи часам. Эволюционный биолог из Гарварда, Дэниел Э. Либерман, утверждает, что традиционная норма восьми часов сна - это скорее культурное наследие индустриальной эпохи, чем биологическая необходимость. По его словам, полевые исследования, проведенные в сообществах, не использующих электричество, показывают, что средняя продолжительность сна составляет 6-7 часов, что значительно отличается от общепринятого стандарта. Современные эпидемиологические данные подтверждают этот взгляд. Исследования выявили так называемую "U-образную кривую" зависимости между продолжительностью сна и рисками для здоровья. Минимальные показатели заболеваемости и смертности наблюдаются именно у людей, спящих около семи часов в сутки. ...>>

Дефицит кислорода усиливает выброс закиси азота 12.11.2025

Парниковые газы играют ключевую роль в изменении климата, а закись азота (N2O) - один из наиболее опасных среди них. Этот газ не только втрое сильнее углекислого газа в удержании тепла, но и разрушает озоновый слой. Недавнее исследование американских ученых показало, что микробы в зонах с низким содержанием кислорода активно производят N2O, усиливая глобальные климатические риски. Команда из Университета Пенсильвании изучала прибрежные воды у Сан-Диего и провела наблюдения на глубинах от 40 до 120 метров в Восточной тропической северной части Тихого океана - одной из крупнейших зон дефицита кислорода. Исследователи сосредоточились на том, как морские микроорганизмы превращают нитраты в закись азота. В ходе работы выяснилось, что существует два пути образования N2O. Один путь начинается с нитрата, другой - с нитрита. На первый взгляд более короткий путь должен быть эффективнее, однако микробы, использующие нитрат, продуцируют больше газа, поскольку этот "сырьевой" источник более д ...>>

Омега-3 помогают молодым кораллам выживать 11.11.2025

Сохранение коралловых рифов становится все более актуальной задачей в условиях глобального изменения климата. Молодые кораллы особенно уязвимы на ранних стадиях развития, когда стрессовые условия и нехватка питательных веществ могут привести к высокой смертности. Недавнее исследование ученых из Технологического университета Сиднея показывает, что специальные пищевые добавки способны существенно повысить выживаемость личинок кораллов. В ходе работы исследователи разработали особый состав "детского питания" для коралловых личинок. В него вошли масла, богатые омега-3 жирными кислотами, а также важные стерины, необходимые для формирования клеточных мембран. Личинки, получавшие эти добавки, развивались быстрее, становились крепче и демонстрировали более высокую устойчивость к стрессовым факторам. Особое внимание ученые уделили липидам. Анализ показал, что личинки активно усваивают эти вещества, что напрямую влияет на их жизнеспособность. Стерины, содержащиеся в корме, повышают устойчи ...>>

Случайная новость из Архива

Графен для микрочипов 17.02.2021

Новое исследование Университета Сассекса (Великобритания) показывает, что изменение структуры наноматериалов, таких как графен, может эффективно разблокировать их электронные свойства.

"Мы механически создаем складки в слое графена. Это немного похоже на нано-оригами", - сказал Алан Далтон (Alan Dalton), профессор школы математических и физических наук в Университете Сассекса.

Этот вид технологии - "стрейнтроника" - позволяет разместить больше микросхем внутри любого устройства. "Все, что мы хотим делать с компьютерами, чтобы ускорить их работу, можно получить, деформировав графен таким образом", - добавил он.

Ранее уже было показано, что деформирование структуры 2D-наноматериалов способно раскрыть их ключевые электронные свойства, но точное влияние различных "складок" все еще остается плохо изученным.

Ученые из Сассекса провели глубокое исследование структурных изменений графена, а также дисульфида молибдена, и вносимых ими напряжений. Они продемонстрировали как целенаправленное деформирование таких материалов позволяет получить нужный электронный компонент, например, транзистор или логический вентиль.

Полученные результаты, вероятно, найдут отклик в отрасли, вынужденной следовать закону Мура из-за растущего спроса на более быстрые вычисления.

Другие интересные новости:

▪ Возрождение шерстистого мамонта

▪ Для роботов сухожилия лучше сервоприводов

▪ Управление мозговыми волнами

▪ В чистом воздухе живут дольше

▪ Миниатюрный датчик бесконтактной идентификации по рисунку вен

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Справочные материалы. Подборка статей

▪ статья Пифагор. Знаменитые афоризмы

▪ статья Как лечится сломанная кость? Подробный ответ

▪ статья Верес. Легенды, выращивание, способы применения

▪ статья Металлоискатель на сравнении частот. Энциклопедия радиоэлектроники и электротехники

▪ статья Цветные кольца в студнях. Химический опыт

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:





Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2025