Menu Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Прибор для настройки антенн. Энциклопедия радиоэлектроники и электротехники

Бесплатная техническая библиотека

Энциклопедия радиоэлектроники и электротехники / Антенны. Измерения, настройка и согласование

Комментарии к статье Комментарии к статье

В данной статье предлагается прибор для измерения резонансной частоты антенн с кабельными фидерами. Он не позволяет получить каких-то принципиально новых результатов, но более прост в изготовлении и использовании. Например, рефлектометр из книги К. Ротхаммеля "Антенны" требует подачи на измерительную линию мощности в несколько десятков ватт, а на НЧ диапазонах и того больше, иначе отраженная волна в измерительной линии будет очень мала по амплитуде и недостаточна для ее линейного детектирования диодом. В результате прибор будет показывать прекрасный КСВ даже при приличном рассогласовании. Не отсюда ли происходят частые заявления в эфире, что то один, то другой очень хорошо отстроили свои антенны на 1,8 МГц и КСВ равен единице? Если не увеличить раза в три длину измерительной линии против той, что указана в книге К. Ротхаммеля, то на 1,8 МГц даже мощности в полкиловатта едва-едва хватает, чтобы падающая волна отклонила стрелку прибора в конец шкалы. О линейном измерении же отраженной волны не может быть и речи. Ее сигнал просто не откроет диод. Измерение же КСВ на 1,8 МГц при разрешенных мощностях 5 и 10 Вт простыми рефлектометрами представляется делом вообще нереальным.

Предлагаемый метод не связан с регистрацией отраженной волны и ему ненужна никакая мощность, что, помимо очевидных удобств при настройке, позволит снизить загрузку диапазона. Метод основан на воздействии антенны на колебательный контур, к которому антенна подключается. Известно, что входное сопротивление фидера чисто активное и равно волновому сопротивлению кабеля только в случае идеального согласования, т.е. если он нагружен на активное сопротивление, равное волновому, и реактивная составляющая отсутствует. При рассогласовании по частоте во входном сопротивлении появляется либо индуктивная, либо емкостная составляющая.

Если фидер подключен параллельно к колебательному контуру, индуктивная составляющая вызовет уход частоты вверх, а емкостная - вниз. Причем сравнивать отклонение нужно по отношению к тому положению, которое имеется при подключении к контуру активного сопротивления в виде резистора, равного по величине волновому сопротивлению кабеля. Чтобы измерить резонансную частоту контура, его удобно включить в состав перестраиваемого автогенератора, частота которого регистрируется внешним частотомером (рис. 1).

Связь антенны с контуром должна быть слабой, иначе генерация сорвется или будет очень неустойчивой. Большое внимание нужно обратить на переключатель S1, который должен иметь минимальные паразитные индуктивность и емкость; длины монтажных проводов от S1 к эквивалентному резистору и гнезду антенны должны быть минимальными. При выборе источника питания необходимо иметь в виду, что амплитуда генерируемого напряжения на контуре должна быть достаточно большой. Иначе при измерениях внешние мощные сигналы, принятые антенной, будут вызывать затягивания частоты генератора и измерения либо вообще не получатся, либо будут неточными.

Прибор для настройки антенн

Итак, к контуру в одном положении переключателя S1 подключается безындукционный резистор "Эквивалент", равный волновому сопротивлению кабеля, а в другом положении подключается фидер антенны.

Частота в положении "Эквивалент", кГц Частота в положении "Антенна", кГц Разница в частотах, кГц
1840 1844 +4.0
1820 1824 +4.0
(800 1804.7 +4.7
1750 1757 +7
1700 1693 -7
Резонанс расположен между 1750 и 1700 кГц. Посмотрим поточнее:
1725 1728.8 +3.4
1710 1706.2 -3.8
1715 1713.8 -1.2
1720 1721.2 +1.2
1717 1716.4 -0.6
1718 1718.0 +0.0 Резонанс

Работа с прибором. Установим переключатель в положение "Эквивалент". Ручкой настройки генератора установим по частотомеру частоту, на которой должна работать антенна. Переключим S1 в положение "Антенна". Частота автогенератора изменится. Отметим, куда изменилась частота - вверх или вниз. Сделав через несколько десятков кГц несколько измерений, можно найти частоту, где ее отклонение имеет противоположный знак. Между двумя частотами, на которых отклонение имеет противоположные знаки, можно найти частоту, где отклонение равно нулю - резонансную частоту. Приведу протокол первого, испытательного включения прибора при измерении антенны INV VEE на 1,8 МГц. Ввиду небольшой высоты мачты (15,5м) концы вибраторов лежали почти на крыше. Длины их были отмерены с некоторым запасом.

Прибор показал резонансную частоту ниже рабочей. Для расчета укорочения была составлена пропорция между существующей резонансной частотой и требуемой (1850 кГц) и определено, какую часть вибраторов (в процентах) надо убрать. Подобные измерения на антеннах дипольного типа были автором произведены на 3,5 и 7 МГц. Характер отклонения частоты везде один и тот же: при измерении на частоте выше резонансной подключение антенны вместо эквивалента вызывает уход частоты автогенератора вверх. При измерении на частоте ниже резонансной уход соответственно вниз. То есть, произведя одно пробное измерение, можно видеть, в какую сторону перестраиваться, чтобы прийти к резонансу (Прим. ред Это справедливо только если длина фидера лежит в пределах 0 - 0,25; 0,5 - 0,75; 1,0 - 1,25 и т.д. от длины волны). Прибор можно использовать также для измерений резонансной частоты входного сопротивления, усилителей и других устройств. Надо только, чтобы прибор по частоте перекрывал исследуемый диапазон. Если PA, нaпример, должен иметь входное сопротивление 50 Ом, мы можем сравнивать его входное сопротивление с эквивалентным резистором.

После изготовления прибор необходимо проверить. Для этого необходимо взять 5 - 10м кабеля такого же типа, каким у вас сделан фидер антенны. На противоположном конце нагрузить его резонансом с сопротивлением, равным волновому, и произвести его измерение прибором. Если прибор показывает правильно, отклонения частоты в положении "Эквивалент" и "Антенна" не будет. Произведя такие измерения на более высоких частотах, можно оценить, до каких частот прибор годен. Но здесь необходимо иметь в виду, что волновое сопротивление кабеля по ГОСТу может иметь отклонения до ±4% ('"Электрические кабели, провода и шнуры. Справочник", Энергоатомиздат, 1988г.). Так что для тех, кто имеет возможность измерять волновое сопротивление своего кабеля, желательно это делать.

В авторском исполнении прибор сделан точно по подобию ГПД ("РЛ", N 7,1992) с той разницей, что отдельные генераторы не объединяются по выходу, а используются самостоятельно. Это дало возможность обойтись без КПЕ и верньера, а также коммутации контуров. На НЧ диапазоны взяты сердечники СБ12А. При использовании варикапов KB 105 количество витков составило: на 1,8МГц - 40 витков диам. 0,35 мм; на 3,5 МГц - 20 витков того же провода. На более высокие частоты катушки можно делать на полистироловых каркасах.

Автор: Г. Гончар (UC2LB); Публикация: Н. Большаков, rf.atnn.ru

Смотрите другие статьи раздела Антенны. Измерения, настройка и согласование.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Кислотность океана разрушает зубы акул 03.10.2025

Мировые океаны выполняют важнейшую функцию - они поглощают около трети углекислого газа, выбрасываемого в атмосферу. Это помогает замедлять темпы глобального потепления, но имеет и обратную сторону. Растворяясь в воде, CO2 образует угольную кислоту, которая повышает концентрацию водородных ионов и приводит к снижению pH. Вода становится более кислой, а последствия этого процесса уже заметны для морских экосистем. Средний показатель кислотности океана сейчас равен примерно 8,1, тогда как еще недавно за условную норму брали значение 8,2. По прогнозам, к 2300 году уровень может упасть до 7,3 - это сделает океан почти в десять раз кислее нынешнего состояния. Для обитателей морей подобные изменения означают не просто сдвиг химического равновесия, а реальную угрозу физиологическим процессам, начиная от формирования раковин у моллюсков и заканчивая охотничьим поведением акул. Чтобы выяснить, как именно кислотная среда отражается на зубах акул, группа немецких исследователей провела эксп ...>>

Почтовый космический корабль Arc 03.10.2025

Космические технологии становятся частью инфраструктуры, способной повлиять на логистику, медицину и даже военную сферу. Идея использовать орбиту как глобальный склад для срочных поставок звучала еще недавно как научная фантастика, но стартап Inversion пытается превратить ее в практическое решение. Компания Inversion появилась в начале 2021 года благодаря Джастину Фиаскетти и Остину Бриггсу, которые на тот момент были студентами Бостонского университета. Их замысел состоял в том, чтобы сделать возможной доставку грузов не только через спутниковые сети данных, но и в буквальном смысле - физических предметов. В основе лежит простая мысль: если космос обеспечивает доступ к любой точке Земли, то и грузы должны перемещаться тем же маршрутом. Уже за три года работы команда из 25 специалистов успела построить демонстрационный аппарат "Ray". Его запуск состоялся в рамках миссии SpaceX Transporter-12. Устройство весом 90 килограммов проверяло ключевые технологии Inversion, включая двухком ...>>

Лазерное обогащение урана 02.10.2025

Ядерная энергия остается одним из ключевых источников стабильного электричества, особенно для стран с растущими потребностями в энергоснабжении. Однако обеспечение бесперебойных поставок топлива для атомных станций требует современных технологий обогащения урана, которые одновременно эффективны и безопасны. Американская компания Global Laser Enrichment (GLE) делает значительный шаг в этом направлении, завершив масштабное тестирование лазерной технологии обогащения урана. Демонстрационная программа была проведена на объекте в Уилмингтоне, Северная Каролина. Тестирование технологии SILEX (Separation of Isotopes by Laser EXcitation), разработанной австралийской Silex Systems, стартовало в мае 2025 года и продлится до конца года. В ходе экспериментов компания планирует получить сотни фунтов низкообогащенного урана (LEU), который может быть использован в качестве топлива для атомных электростанций. GLE была создана в 2007 году для коммерциализации лазерных методов обогащения урана в С ...>>

Случайная новость из Архива

Позитронный томограф для всего тела 28.03.2017

Ученые и инженеры из Калифорнийского университета в Дэвисе разработали проект позитронно-эмиссионного томографа - медицинского прибора, сканирующего все тело. По словам разработчиков, это устройство совершит революцию в радиологии.

Метод позитронной эмиссионной томографии основан на явлении аннигиляции позитрона и электрона. Перед исследованием человек принимает радиофармпрепарат: органическое вещество, в зависимости от типа исследования, в молекуле действующего вещества которого один из атомов замещен на короткоживущий радиоактивный изотоп, который распадается, испуская позитрон. Позитрон сталкивается с ближайшим электроном, собственной античастицей - и они аннигилируют, превращаясь в два фотона с очень высокой энергией (гамма-кванты). Их регистрируют датчики в "трубе" томографа, после чего программное обеспечение восстанавливает траекторию гамма-квантов до точки аннигиляции. А поскольку препарат доставляется в определенные органы, с помощью ПЭТ можно получить огромное количество информации - например, увидеть зоны активности мозга, метастазы или очаги воспаления.

ПЭТ-исследование во многих областях остается очень информативным, но и очень дорогим: радиофармпрепараты готовятся на циклотронах специально для конкретного исследования, да и сам сканер недешев. Однако существующие сканеры считывают сигнал только с небольших участков тела, в длин, как правило, не превышающих 25 сантиметров. Чтобы сканировать все тело, нужно проделать все манипуляции несколько раз, что связано с существенной радиационной нагрузкой на организм. Кроме того, небольшие размеры современных сканеров и дороговизна всей процедуры ограничивает возможности динамической диагностики.

Авторы проекта ПЭТ-сканера для всего тела рассчитывают увеличить точность диагностики в 40 раз, а значение отношения сигнала к шуму увеличить в шесть раз.

В свою очередь, высокая чувствительность прибора позволить пользоваться меньшими и более безопасными дозами радиопрепаратов; авторы проекта даже предполагают, что ПЭТ-исследования найдут применение в пренатальной медицине.

Но в первую очередь новый сканер поступит в онкологические отделения: повышенная чувствительность и сканирование всего тела позволят выявлять небольшие опухоли и метастазы. Еще одно перспективное направление - тестирование новых лекарств и наблюдение их работы непосредственно в теле во время клинических испытаний.

Другие интересные новости:

▪ KATRIN помог взвесить нейтрино

▪ Подводный вулкан

▪ Объектив TTArtisan 23mm F1.4

▪ Держишь собаку - болеешь реже

▪ Робот-собака Lenovo Daystar Bot GS

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Электрик в доме. Подборка статей

▪ статья Теория эволюции органического мира. История и суть научного открытия

▪ статья Какая знаменитая игрушка стала побочным продуктом разработки для нужд военно-морского флота? Подробный ответ

▪ статья Красный или зеленый? Радио - начинающим

▪ статья Автомат лестничного освещения с микрофоном и функцией таймера. Энциклопедия радиоэлектроники и электротехники

▪ статья Делители телевизионного сигнала. Энциклопедия радиоэлектроники и электротехники

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:





Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2025