Menu Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Прибор для настройки антенн. Энциклопедия радиоэлектроники и электротехники

Бесплатная техническая библиотека

Энциклопедия радиоэлектроники и электротехники / Антенны. Измерения, настройка и согласование

Комментарии к статье Комментарии к статье

В данной статье предлагается прибор для измерения резонансной частоты антенн с кабельными фидерами. Он не позволяет получить каких-то принципиально новых результатов, но более прост в изготовлении и использовании. Например, рефлектометр из книги К. Ротхаммеля "Антенны" требует подачи на измерительную линию мощности в несколько десятков ватт, а на НЧ диапазонах и того больше, иначе отраженная волна в измерительной линии будет очень мала по амплитуде и недостаточна для ее линейного детектирования диодом. В результате прибор будет показывать прекрасный КСВ даже при приличном рассогласовании. Не отсюда ли происходят частые заявления в эфире, что то один, то другой очень хорошо отстроили свои антенны на 1,8 МГц и КСВ равен единице? Если не увеличить раза в три длину измерительной линии против той, что указана в книге К. Ротхаммеля, то на 1,8 МГц даже мощности в полкиловатта едва-едва хватает, чтобы падающая волна отклонила стрелку прибора в конец шкалы. О линейном измерении же отраженной волны не может быть и речи. Ее сигнал просто не откроет диод. Измерение же КСВ на 1,8 МГц при разрешенных мощностях 5 и 10 Вт простыми рефлектометрами представляется делом вообще нереальным.

Предлагаемый метод не связан с регистрацией отраженной волны и ему ненужна никакая мощность, что, помимо очевидных удобств при настройке, позволит снизить загрузку диапазона. Метод основан на воздействии антенны на колебательный контур, к которому антенна подключается. Известно, что входное сопротивление фидера чисто активное и равно волновому сопротивлению кабеля только в случае идеального согласования, т.е. если он нагружен на активное сопротивление, равное волновому, и реактивная составляющая отсутствует. При рассогласовании по частоте во входном сопротивлении появляется либо индуктивная, либо емкостная составляющая.

Если фидер подключен параллельно к колебательному контуру, индуктивная составляющая вызовет уход частоты вверх, а емкостная - вниз. Причем сравнивать отклонение нужно по отношению к тому положению, которое имеется при подключении к контуру активного сопротивления в виде резистора, равного по величине волновому сопротивлению кабеля. Чтобы измерить резонансную частоту контура, его удобно включить в состав перестраиваемого автогенератора, частота которого регистрируется внешним частотомером (рис. 1).

Связь антенны с контуром должна быть слабой, иначе генерация сорвется или будет очень неустойчивой. Большое внимание нужно обратить на переключатель S1, который должен иметь минимальные паразитные индуктивность и емкость; длины монтажных проводов от S1 к эквивалентному резистору и гнезду антенны должны быть минимальными. При выборе источника питания необходимо иметь в виду, что амплитуда генерируемого напряжения на контуре должна быть достаточно большой. Иначе при измерениях внешние мощные сигналы, принятые антенной, будут вызывать затягивания частоты генератора и измерения либо вообще не получатся, либо будут неточными.

Прибор для настройки антенн

Итак, к контуру в одном положении переключателя S1 подключается безындукционный резистор "Эквивалент", равный волновому сопротивлению кабеля, а в другом положении подключается фидер антенны.

Частота в положении "Эквивалент", кГц Частота в положении "Антенна", кГц Разница в частотах, кГц
1840 1844 +4.0
1820 1824 +4.0
(800 1804.7 +4.7
1750 1757 +7
1700 1693 -7
Резонанс расположен между 1750 и 1700 кГц. Посмотрим поточнее:
1725 1728.8 +3.4
1710 1706.2 -3.8
1715 1713.8 -1.2
1720 1721.2 +1.2
1717 1716.4 -0.6
1718 1718.0 +0.0 Резонанс

Работа с прибором. Установим переключатель в положение "Эквивалент". Ручкой настройки генератора установим по частотомеру частоту, на которой должна работать антенна. Переключим S1 в положение "Антенна". Частота автогенератора изменится. Отметим, куда изменилась частота - вверх или вниз. Сделав через несколько десятков кГц несколько измерений, можно найти частоту, где ее отклонение имеет противоположный знак. Между двумя частотами, на которых отклонение имеет противоположные знаки, можно найти частоту, где отклонение равно нулю - резонансную частоту. Приведу протокол первого, испытательного включения прибора при измерении антенны INV VEE на 1,8 МГц. Ввиду небольшой высоты мачты (15,5м) концы вибраторов лежали почти на крыше. Длины их были отмерены с некоторым запасом.

Прибор показал резонансную частоту ниже рабочей. Для расчета укорочения была составлена пропорция между существующей резонансной частотой и требуемой (1850 кГц) и определено, какую часть вибраторов (в процентах) надо убрать. Подобные измерения на антеннах дипольного типа были автором произведены на 3,5 и 7 МГц. Характер отклонения частоты везде один и тот же: при измерении на частоте выше резонансной подключение антенны вместо эквивалента вызывает уход частоты автогенератора вверх. При измерении на частоте ниже резонансной уход соответственно вниз. То есть, произведя одно пробное измерение, можно видеть, в какую сторону перестраиваться, чтобы прийти к резонансу (Прим. ред Это справедливо только если длина фидера лежит в пределах 0 - 0,25; 0,5 - 0,75; 1,0 - 1,25 и т.д. от длины волны). Прибор можно использовать также для измерений резонансной частоты входного сопротивления, усилителей и других устройств. Надо только, чтобы прибор по частоте перекрывал исследуемый диапазон. Если PA, нaпример, должен иметь входное сопротивление 50 Ом, мы можем сравнивать его входное сопротивление с эквивалентным резистором.

После изготовления прибор необходимо проверить. Для этого необходимо взять 5 - 10м кабеля такого же типа, каким у вас сделан фидер антенны. На противоположном конце нагрузить его резонансом с сопротивлением, равным волновому, и произвести его измерение прибором. Если прибор показывает правильно, отклонения частоты в положении "Эквивалент" и "Антенна" не будет. Произведя такие измерения на более высоких частотах, можно оценить, до каких частот прибор годен. Но здесь необходимо иметь в виду, что волновое сопротивление кабеля по ГОСТу может иметь отклонения до ±4% ('"Электрические кабели, провода и шнуры. Справочник", Энергоатомиздат, 1988г.). Так что для тех, кто имеет возможность измерять волновое сопротивление своего кабеля, желательно это делать.

В авторском исполнении прибор сделан точно по подобию ГПД ("РЛ", N 7,1992) с той разницей, что отдельные генераторы не объединяются по выходу, а используются самостоятельно. Это дало возможность обойтись без КПЕ и верньера, а также коммутации контуров. На НЧ диапазоны взяты сердечники СБ12А. При использовании варикапов KB 105 количество витков составило: на 1,8МГц - 40 витков диам. 0,35 мм; на 3,5 МГц - 20 витков того же провода. На более высокие частоты катушки можно делать на полистироловых каркасах.

Автор: Г. Гончар (UC2LB); Публикация: Н. Большаков, rf.atnn.ru

Смотрите другие статьи раздела Антенны. Измерения, настройка и согласование.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Оптимальная продолжительность сна 12.11.2025

Сон играет ключевую роль в поддержании здоровья, когнитивных функций и общего самочувствия. Несмотря на широко распространенный стереотип о восьмичасовом сне, последние исследования показывают, что оптимальная продолжительность сна для большинства здоровых взрослых ближе к семи часам. Эволюционный биолог из Гарварда, Дэниел Э. Либерман, утверждает, что традиционная норма восьми часов сна - это скорее культурное наследие индустриальной эпохи, чем биологическая необходимость. По его словам, полевые исследования, проведенные в сообществах, не использующих электричество, показывают, что средняя продолжительность сна составляет 6-7 часов, что значительно отличается от общепринятого стандарта. Современные эпидемиологические данные подтверждают этот взгляд. Исследования выявили так называемую "U-образную кривую" зависимости между продолжительностью сна и рисками для здоровья. Минимальные показатели заболеваемости и смертности наблюдаются именно у людей, спящих около семи часов в сутки. ...>>

Дефицит кислорода усиливает выброс закиси азота 12.11.2025

Парниковые газы играют ключевую роль в изменении климата, а закись азота (N2O) - один из наиболее опасных среди них. Этот газ не только втрое сильнее углекислого газа в удержании тепла, но и разрушает озоновый слой. Недавнее исследование американских ученых показало, что микробы в зонах с низким содержанием кислорода активно производят N2O, усиливая глобальные климатические риски. Команда из Университета Пенсильвании изучала прибрежные воды у Сан-Диего и провела наблюдения на глубинах от 40 до 120 метров в Восточной тропической северной части Тихого океана - одной из крупнейших зон дефицита кислорода. Исследователи сосредоточились на том, как морские микроорганизмы превращают нитраты в закись азота. В ходе работы выяснилось, что существует два пути образования N2O. Один путь начинается с нитрата, другой - с нитрита. На первый взгляд более короткий путь должен быть эффективнее, однако микробы, использующие нитрат, продуцируют больше газа, поскольку этот "сырьевой" источник более д ...>>

Омега-3 помогают молодым кораллам выживать 11.11.2025

Сохранение коралловых рифов становится все более актуальной задачей в условиях глобального изменения климата. Молодые кораллы особенно уязвимы на ранних стадиях развития, когда стрессовые условия и нехватка питательных веществ могут привести к высокой смертности. Недавнее исследование ученых из Технологического университета Сиднея показывает, что специальные пищевые добавки способны существенно повысить выживаемость личинок кораллов. В ходе работы исследователи разработали особый состав "детского питания" для коралловых личинок. В него вошли масла, богатые омега-3 жирными кислотами, а также важные стерины, необходимые для формирования клеточных мембран. Личинки, получавшие эти добавки, развивались быстрее, становились крепче и демонстрировали более высокую устойчивость к стрессовым факторам. Особое внимание ученые уделили липидам. Анализ показал, что личинки активно усваивают эти вещества, что напрямую влияет на их жизнеспособность. Стерины, содержащиеся в корме, повышают устойчи ...>>

Случайная новость из Архива

Изображения пищи, созданные ИИ, вызывают тревожность 27.02.2025

Современные технологии искусственного интеллекта (ИИ) достигли невероятных успехов в создании изображений, поражающих своей реалистичностью. Однако недавнее исследование выявило неожиданный побочный эффект: изображения пищи, сгенерированные ИИ, вызывают у людей чувство тревоги и дискомфорта. Особенно сильно это проявляется в тех случаях, когда картинка стремится к фотореализму, но содержит едва заметные искажения.

Ученые предполагают, что такая реакция связана не с опасением съесть испорченный продукт, а с пищевой неофобией - естественным страхом перед незнакомой едой. Наш мозг эволюционно запрограммирован на то, чтобы избегать потенциально опасных продуктов, и ИИ-изображения, в которых есть что-то неестественное, могут активировать этот механизм.

Для изучения этого феномена исследователи провели два эксперимента. В первом, пилотном исследовании, 12 студентам были показаны 99 изображений пищи, созданных ИИ. Участники оценивали их по таким критериям, как удовольствие, "жуткость", фотореалистичность и художественное качество.

В основном исследовании приняли участие 95 человек, которым были продемонстрированы 38 изображений, варьирующихся от реалистичных до мультяшных, а также фотографии испорченной пищи. Участники оценивали изображения по уровню "жуткости", теплоты и реализма, а также прошли тест на пищевую неофобию.

Результаты показали, что фотореалистичные, но искаженные изображения пищи, созданные ИИ, вызывают эффект "зловещей долины" - чувство дискомфорта и тревоги, которое возникает при виде объектов, слишком похожих на реальные, но имеющих незначительные отклонения. Мультяшные изображения, напротив, не вызывали такого эффекта.

Кроме того, выяснилось, что люди с высоким уровнем пищевой неофобии испытывают большую тревогу при виде таких изображений. Также было обнаружено, что индекс массы тела (ИМТ) влияет на восприятие: люди с более высоким ИМТ проявляли меньшее беспокойство.

Ученые планируют продолжить исследования, чтобы понять, как культурные особенности и привыкание к ИИ-изображениям повлияют на эту реакцию в будущем. Возможно, со временем люди привыкнут к таким изображениям и перестанут испытывать тревогу.

Другие интересные новости:

▪ Интернет в лифте

▪ Адаптер HTC Media Link HD для беспроводной трансляции видео с телефона

▪ Изменение реальности и ложная память

▪ Жидкокристаллический кабель для передачи тока

▪ По реке - как по шоссе

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Электромонтажные работы. Подборка статей

▪ статья Использование планов при видеосъемке. Искусство видео

▪ статья Почему шведский химик Шееле должен был стать графом, но не стал? Подробный ответ

▪ статья Машинист передвижного бетоносмесителя (автобетоносмесителеля). Типовая инструкция по охране труда

▪ статья Лампово-полупроводниковый УМЗЧ. Энциклопедия радиоэлектроники и электротехники

▪ статья Лимонад из ваты. Секрет фокуса

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:





Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2025