Menu Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Приставка-ГКЧ для диапазонов 300...900 и 800...1950 МГц. Энциклопедия радиоэлектроники и электротехники

Бесплатная техническая библиотека

Энциклопедия радиоэлектроники и электротехники / Измерительная техника

Комментарии к статье Комментарии к статье

Регулировка радиоэлектронной аппаратуры с визуальным отображением амплитудно-частотных характеристик всегда пользуется у радиолюбителей и специалистов повышенным интересом, так как позволяет оперативно видеть на экране измерительного прибора результаты воздействия при изменении какого-либо параметра или элемента настраиваемого изделия. Единственным недостатком данного метода контроля является сравнительно высокая стоимость промышленных образцов измерителей частотных характеристик. Но радиолюбители и здесь нашли достойный выход - создание простых приставок к ставшему уже привычным осциллографу. При этом частотная характеристика самого осциллографа особой роли не играет. В журнале "Радио" 1994, № 1, с.26 приводилось описание такой приставки для регулировки телевизионной аппаратуры с указанием на возможности расширения ее функциональных возможностей.

Сегодня мы приводим рекомендации по доработке данной приставки с целью использования ее для регулировки устройств, работающих в диапазонах ДМВ и СВЧ (селекторы каналов ДМВ, тюнеры систем спутникового телевизионного вещания и др.).

Приставка-ГКЧ для диапазонов 300...900 и 800...1950 МГц
(нажмите для увеличения)

Публикация в названном журнале описания приставки для измерения частотных характеристик и последующие отклики радиолюбителей заставили заняться разработкой рекомендаций для массового повторения устройства, работающего в диапазонах более высоких частот. Ниже приводятся описания двух вариантов доработок приставки с генераторами на 300...900 и 800...1950 МГц. При этом оказалось, что модификация приставки не требует полной ее переделки, достаточно только изменить конструкцию высокочастотного генератора. Поэтому нумерация элементов на приводимых принципиальных схемах продолжает нумерацию основной схемы приставки.

На рис.1 приведена схема ГКЧ, она одинакова для обоих высокочастотных диапазонов. На транзисторах VT2 и VT3 выполнен генератор, частота которого изменяется в требуемых пределах при изменении тока через эти транзисторы, а каскад на транзисторе VT4 выполняет роль буферного усилителя.

Различаются генераторы каждого из диапазонов своими конструкционными исполнениями. Катушки индуктивности на указанные диапазоны ввиду их небольшой индуктивности необходимо выполнить в виде полосковых линий. На рис.2 показан вариант ГКЧ для диапазона 300...900 МГц, а на рис.3 - для диапазона 800...1950 МГц. Конфигурацию дорожек, выполняющих роль катушек индуктивностей L1 и L2, следует повторить как можно точнее по приводимому рисунку. Для изготовления плат генераторов использован двухсторонний фольгированный стеклотекстолит толщиной 1 мм. Сторона, свободная от элементов, оставлена металлизированной и соединена по периметру платы с общей шиной питания полосками тонкой медной фольги.

При выполнении монтажа плат генераторов следует использовать керамические и стеклокерамические типы конденсаторов КМ-5в, К10-9, К10-17В или КМ-5, КД-1, резисторы типа МЛТ- 0,125. Все элементы, в том числе и транзисторы, должны иметь минимальную длину выводов, которая обеспечивает надежный монтаж. Указанные на схеме типы транзисторов можно заменить на КТ3101А-2 и КТ3132А-2.

Налаживание устройств начинают с установки резистором R15 напряжения на конденсаторе С8 в пределах 5...7 В. Затем по методике, изложенной при описании базового варианта приставки, устанавливают диапазон изменения частоты генератора. При этом можно несколько (не более 5 мм) укоротить катушки L1, L2, а так как коэффициент перекрытия по частоте уменьшится, то возможно придется уменьшить и напряжение на резисторах R2 и R4 базовой конструкции. Для этого последовательно с этими резисторами, между катодом стабилитрона VD1 и верхними по схеме выводами переменных резисторов следует установить дополнительные резисторы необходимой величины.

Приставка-ГКЧ для диапазонов 300...900 и 800...1950 МГц Приставка-ГКЧ для диапазонов 300...900 и 800...1950 МГц

Неравномерность АЧХ можно корректировать изменением величины резистора R17 в пределах до 150 Ом или закорачиванием части линии катушки L4.

В конструкции платы генератора для диапазона 800...1950 МГц емкости конденсаторов С7 и С9 можно уменьшить в два раза и использовать преимущественно конденсаторы типов К10-42, К10-17, К10-9. Если использовать конденсаторы с выводами, то может повыситься неравномерность амплитудно-частотной характеристики устройства. Кроме этого, желательно в качестве резисторов R19 и R20 выходного делителя напряжения использовать резисторы типа С2-10 с выводами минимальной длины, а схему детекторной головки выполнить в соответствии с рис.4.

Приставка-ГКЧ для диапазонов 300...900 и 800...1950 МГц

Автор: И. Нечаев, г. Курск; Публикация: Н. Большаков, rf.atnn.ru

Смотрите другие статьи раздела Измерительная техника.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Шимпанзе могут менять свои убеждения 10.11.2025

Понимание того, как формируются убеждения и принимаются решения, традиционно считалось уникальной способностью человека. Однако недавнее исследование показало, что шимпанзе обладают способностью пересматривать свои мнения на основе новых данных, демонстрируя уровень рациональности, который ранее считался исключительно человеческим. Психологи под руководством Ханны Шлейхауф из Утрехтского университета провели серию экспериментов, направленных на изучение метапознания у шимпанзе. Исследователи впервые наблюдали, как эти обезьяны могут взвешивать различные виды доказательств и корректировать свои решения при появлении более убедительной информации. Экспериментаторы рассматривали рациональность как способность формировать убеждение о мире на основе фактических данных. При поступлении новой информации разумное существо способно сравнивать старые и новые данные и изменять свое мнение, если новые доказательства оказываются более весомыми. Для экспериментов использовались шимпанзе из ...>>

Полет на Марс: испытание для тела и выживания человечества 10.11.2025

Исследование космоса и перспективы полета на Марс привлекают внимание ученых и инженеров по всему миру. Но за технологическими достижениями скрывается серьезная угроза для здоровья астронавтов. Как отмечает Interesting Engineering, даже самые современные ракеты и системы жизнеобеспечения не способны полностью защитить человека от физических и генетических изменений, возникающих во время длительных космических миссий. Эти риски включают потерю костной массы, ослабление мышц и даже потенциальные повреждения ДНК. Путешествие на Марс длится от шести до девяти месяцев. В условиях невесомости организм, привыкший к земной гравитации, претерпевает значительные изменения. Мышцы атрофируются, кости теряют до 1% плотности в месяц, сердце уменьшается в размерах, а позвоночник удлиняется, вызывая боль и дискомфорт. После возвращения на Землю астронавты сталкиваются с головокружением и проблемами при вставании из-за адаптации к гравитации. Особую опасность представляет перераспределение жидкос ...>>

Зеркальные спутники и их угрозы для астрономии и экологии 09.11.2025

Калифорнийский космический стартап Reflect Orbital, который планирует к 2030 году вывести на орбиту 4 000 зеркальных спутников, отражающих солнечный свет на Землю даже ночью. Главная цель - увеличить эффективность солнечных электростанций, обеспечивая непрерывное освещение в ночное время. Первый демонстрационный аппарат EARENDIL-1 с зеркалом площадью 334 м2 предполагается запустить в апреле 2026 года, а соответствующая заявка уже подана в Федеральную комиссию связи США (FCC). Проект получил 1,25 млн долларов поддержки от ВВС США в рамках программы для малого бизнеса. Идея заключается в том, чтобы спутники создавали дополнительное освещение для энергетических систем, однако многие ученые выражают сомнения как в технической реализуемости, так и в потенциальном вреде для окружающей среды. Астрономы, включая Майкла Брауна и Мэтью Кенворти, подсчитали, что отраженный свет будет примерно в 15 000 раз слабее дневного солнца, хотя и ярче полной Луны. Для того чтобы создать хотя бы 20% дн ...>>

Случайная новость из Архива

Новый принцип связи - быстрее оптоволокна 04.11.2017

Международная команда ученых смогла построить сеть последней мили, в которой данные передаются с помощью так называемого "закрученного" света, сообщает Университет Глазго на своем сайте. Этот эксперимент увеличил шансы на то, что "закрученный" свет может стать новым повсеместным способом беспроводной передачи данных, причем скорость передачи он будет обеспечивать большую, чем оптоволоконный кабель.

Команда физиков из Великобритании, Германии, Новой Зеландии и Канады сумела воспроизвести оптический момент импульса, он же момент вращения, необходимый для того, чтобы "закрученный" свет можно было беспрепятственно передавать через открытое пространство. Ученые смогли сообщить необходимое вращение фотонам - отдельным световым частицам - пропустив их через голограмму, похожую на те, которые изображаются на кредитных картах.

В традиционных цифровых коммуникациях фотон используется как единица наряду с нулем для передачи информации. Но благодаря эффекту закрученности обороты фотона могут передавать дополнительную порцию данных, одновременно с нулями и единицами. Эта их способность должна стать основой для технологии скоростной беспроводной передачи данных нового поколения. Однако несмотря на применение оптического момента импульса в проводной передаче информации, использовать его для открытых пространств нелегко - мешают помехи вроде перепадов атмосферного давления, которые приводят к потере данных в оборотах.

Теперь эта проблема стала решаемой. Ученые построили беспроводную сеть последней мили протяженностью в 1,6 км, которая существует в условиях, близких к реальным улицам с их высотными зданиями, пустотами и различного рода помехами. Сеть соорудили в Эрлангене в Германии. В отличие от предыдущих исследований, физикам удалось исчерпывающе описать влияние турбулентного воздуха на фазу структурированного света, который распространяется по каналам такой протяженности.

Другие интересные новости:

▪ Автономные боевые роботы Пентагона

▪ Клавиатура навалом

▪ Ноутбук HP Chromebook 15

▪ NFC-ридер ST25R3918

▪ Сенсорное управление на отключенном тачскрине

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Электропитание. Подборка статей

▪ статья Косит нож. Чертеж, описание

▪ статья Какой водный путь в США соединяет два океана? Подробный ответ

▪ статья Механик предпродажной подготовки. Должностная инструкция

▪ статья Антенны GP + WARC диапазоны. Энциклопедия радиоэлектроники и электротехники

▪ статья Источник питания испытательной станции. Энциклопедия радиоэлектроники и электротехники

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:





Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2025