Menu Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Два устройства для аварийной защиты от превышения сетевого напряжения. Энциклопедия радиоэлектроники и электротехники

Бесплатная техническая библиотека

Энциклопедия радиоэлектроники и электротехники / Защита аппаратуры от аварийных режимов работы сети, блоки бесперебойного питания

Комментарии к статье Комментарии к статье

Наиболее опасным для электроприборов и радиоаппаратуры является аварийное повышение сетевого напряжения. Это может случиться при обрыве из-за сильного ветра открытой воздушной проводки в линии электропередач и замыкании одного из фазных проводов на нулевой. При этом в сети некоторое время может действовать напряжение до 380 В. Включенные лампочки лопаются, а все остальные радиоэлектронные устройства выходят из строя. Наиболее вероятно такое в сельской местности или на даче, хотя были случаи и в городе. Несмотря на то, что случается такое очень редко, от этого не легче тем, кто пострадал.

Стоящие на сетевом вводе в квартиру плавкие предохранители или электромеханические автоматы срабатывают только при превышении заданного тока (обычно при коротком замыкании в цепи). А ток в цепях значительно возрастает уже в случае повреждения электроприборов и радиоаппаратуры. Это объясняется тем, что при повышении сетевого напряжения на 50% рассеиваемая мощность в потребителях энергии увеличиваются более чем в 2 раза (Р=U^2/R).

Многие из бытовых электроприборов (электронагреватели, осветительные лампы, холодильник и др.) не боятся пониженного в сети напряжения. Для них в основном и предназначены приводимые ниже две схемы. Они срабатывают только при возрастании питающего напряжения выше заданного порога и отличаются по своему быстродействию, а значит и области применения.

Самая простая схема, которая может обеспечить защиту ламп освещения или нагревателей в случае аварийного повышения напряжения в сети, показана на рис. 1. В исходном состоянии номинал резистора R1 выбирается так, чтобы реле К1 было отключено. Через группы нормально замкнутых контактов К1.1, К1.2 напряжение поступает в нагрузку.


Рис.1

В качестве реле К1 могут быть использованы почти любые на рабочее напряжение обмотки 220 В и меньше (допустимый ток через контакты должен быть не менее 3...5 А, например из серии РПУ). Величина сопротивления резистора R1 зависит от сопротивления обмотки реле, а также его конструкции (подбирается так, чтобы К1 могло сработать при повышении действующего напряжения в сети выше 260 В). При срабатывании реле цепь нагрузки разомкнется, а дополнительный резистор R2 группой контактов К1.2 будет подключен. Резистор R2 позволит реле устойчиво удерживаться во включенном состоянии. От его величины зависит, при каком уровне пониженного напряжения реле вернется в исходное состояние (отключится).

Для того чтобы исключить дребезг контактов К1.1 при приближении напряжения к пороговому значению, потребуется подогнуть контакты К1.2 так, чтобы они срабатывали раньше, чем К1.1.

Недостатком этой схемы является низкая скорость срабатывания, из-за чего она не может надежно защитить не инерционные бытовые приборы и радиоаппаратуру.

Большую скоростью срабатывания защиты обеспечивает вторая схема, рис. 2. Она питается непосредственно от сети и должна быть подключена в дежурном режиме постоянно. Устройство отличается малым потребляемым током в дежурном режиме - около 2 мА, а при срабатывании защиты - не более 100 мА.


Рис.2

В исходном состоянии реле К1 не включено и на конденсаторе С1 накапливается энергия за счет его заряда от сети через резистор R2. При этом напряжение на С1 превысит необходимое номинальное для работы реле на 30...50%. Это позволяет ускорить срабатывание репе. Стабилитрон VD1 ограничивает величину напряжения на конденсаторе С1 уровнем 33 В (без него напряжение может достигать 340 В).

При увеличении напряжения в сети, как только оно превысит на резисторе R5 порог открывания стабилитрона VD3 - открываются транзистор VT1 и тиристор VS1. За счет накопленной на конденсаторе С1 энергии срабатывает реле К1. Группа контактов К1.1 подключает резистор R1 параллельно с R2. Проходящий через него ток позволяет удерживать реле во включенном состоянии после срабатывания, когда конденсатор разрядится через обмотку реле.

Здесь используется особенность электромагнитных реле - для удержания контактов во включенном состоянии требуется меньший ток, чем для включения. Поэтому включение выполняется при повышенном напряжении, а удержание осуществляется минимально необходимым - это примерно 18 В для типа ТКЕ54.

Отключение нагрузки выполняют группы нормально замкнутых контактов реле К1 (они включены параллельно для увеличения допустимого проходящего тока).

Конденсатор С2 предотвращает срабатывание защиты от кратковременных помех в сети.

Индикатором срабатывания защиты является свечение светодиода HL1. Диод VD8 предохраняет светодиод от воздействия высокого обратного напряжения.

В случае срабатывания защиты вернуть схему в исходное состояние можно, нажав на кнопку "сброс" (SB1).

В схеме использованы детали: резистор R1 типа ПЭВ на 25 Вт, а остальные - постоянные резисторы типа МЛТ с соответствующей мощностью рассеивания (она указана на схеме). Подстроечный резистор R5 типа СП5-16А-1 Вт. Конденсаторы С1 типа К50-35, С2 - К10-17. В качестве диодов VD1, VD2, VD5...VD7 подойдут любые выпрямительные на ток 0,5 А и обратное напряжение не менее 400 В. Транзистор VT1 КТ3102 можно заменить на КТ315 или КТ312. Стабилитрон VD3 заменяется любым из серии прецизионных с напряжением стабилизации 6,6...9,1 В, VD4 на КС533А.

Светодиод HL1 подойдет любой из серии КИПД или АЛ310А. Вместо светодиода удобно применять также неонку.

Тиристор VS1 можно использовать из серий Т112 или Т122, например Т122-20-6 (последняя цифра в обозначении указывает класс допустимого обратного напряжения и в данной схеме значения не имеет).

Реле К1 может быть типа ТКЕ54ПОД или более современное из серии РНЕ44. Такие реле допускают коммутацию напряжения 220 В и позволяют пропускать через свои контакты ток более 10 А, а при параллельном их соединении еще больше.

Все элементы на схеме, выделенные пунктиром, кроме реле К1, расположены на печатной плате из одностороннего стеклотекстолита толщиной 1.5...3 мм с размерами 85х50 мм, рис. 3.


Рис.3

Для настройки устройства потребуется ЛАТР, позволяющий увеличивать напряжение на входе схемы до 260 В. Уровень повышенного сетевого напряжения, при котором срабатывает защита, устанавливается резистором R5. Номинал резистора R6 зависит от типа используемого светодиода HL1 и подбирается для получения нужной яркости свечения индикатора.

Смотрите другие статьи раздела Защита аппаратуры от аварийных режимов работы сети, блоки бесперебойного питания.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Маргарин повышает риск старческого слабоумия 13.06.2025

Деменция, или старческое слабоумие, остается одной из самых серьезных и необратимых проблем современного здравоохранения. Несмотря на прогресс в медицине, эффективных методов лечения пока нет, поэтому особое внимание уделяется выявлению факторов риска и мерам профилактики. Среди них важную роль играют привычки питания, которые могут как снизить, так и повысить вероятность развития нейродегенеративных заболеваний. Одним из спорных продуктов, вызывающих все больше опасений, является маргарин - популярная замена сливочному маслу. Несмотря на свою распространенность, маргарин подвергается интенсивной химической обработке. По мнению Дэвида Винера, специалиста по фитнесу и здоровому образу жизни, работающего с приложением Freeletics на базе искусственного интеллекта, именно содержащийся в маргарине диацетил способен вызывать слипание белка бета-амилоида, который играет ключевую роль в патогенезе деменции и болезни Альцгеймера. Винер утверждает, что этот компонент не только способствует аг ...>>

Контактные линзы с инфракрасным зрением 13.06.2025

Инфракрасный свет представляет собой часть электромагнитного спектра с длиной волны более 700 нанометров - это волны, которые находятся за пределами видимого человеческому глазу диапазона. Благодаря своим свойствам инфракрасный свет широко используется в различных технологиях, от ночного видения до тепловизоров. Однако человеческий глаз не имеет способности воспринимать эти длинноволновые излучения, поэтому для наблюдения инфракрасного света до сих пор требовались громоздкие приборы, такие как ночные очки или камеры с инфракрасными детекторами. Это ограничивало их применение в повседневной жизни и профессиональной деятельности. Недавно команда ученых из Университета науки и технологий Китая под руководством нейроученого Тяня Сюэ разработала инновационные контактные линзы с наночастицами, способными преобразовывать инфракрасный свет в видимый. Этот процесс называется "восходящим преобразованием" (upconversion) - наноматериалы внутри линз меняют длинные инфракрасные волны на короткие ...>>

Ультратонкие водородные мембраны 12.06.2025

Водородные технологии приобретают все большее значение в глобальном переходе к экологически чистой энергетике. Одним из ключевых элементов таких систем являются мембраны, через которые происходит транспорт ионов в топливных элементах. Недавние разработки норвежской исследовательской лаборатории SINTEF открывают новые горизонты в этой области, предлагая ультратонкие мембраны, которые не только повышают эффективность, но и уменьшают затраты и вредное воздействие на окружающую среду. Новая мембрана, представленная специалистами SINTEF, имеет толщину всего 10 микрометров, что составляет примерно две трети от стандартной толщины в 15 микрометров. В пресс-релизе лаборатории описывается, что такой тонкий материал кажется сопоставимым с легчайшим листом бумаги формата А4, который при этом прочнее и тоньше многих аналогов. Этот значительный шаг вперед позволит существенно сократить себестоимость производства топливных элементов - примерно на 20%. При этом снижение толщины мембраны никак н ...>>

Случайная новость из Архива

Новый способ управления скоростью света 18.04.2019

Группа исследователей из университета Центральной Флориды нашла новый способ управления скоростью импульса света. Мало того, что этот метод позволяет ускорить или замедлить импульс света, он также позволяет изменить знак значения скорости на обратный, т.е. заставляет свет двигаться в противоположном направлении. Данное достижение в ближайшем будущем может привести к появлению новых высокоэффективных оптических коммуникационных систем, "замедленные" импульсы света можно будет использовать в качестве буферного хранилища данных, что позволит предотвратить информационные потери.

Отметим, что это далеко не первая попытка реализации технологии управления скоростью света, но практически во всех других подобных технологиях для этого использовались различные материалы, имеющие разные показатели коэффициента преломления, скорости распространения света и других оптических характеристик. Новый способ является первым способом, позволяющим замедлить или ускорить свет в открытом пространстве, не используя никакого материала в качестве световода.

В своих экспериментах ученые показали, что они могут ускорить импульс до скорости, в 30 раз превышающей нормальную скорость света, замедлить его до половины от изначальной скорости и даже послать этот импульс в обратном направлении. Такие чудеса со светом им позволяет творить устройство под названием пространственный оптический модулятор. Если говорить простым языком? не вдаваясь в физические и математические дебри, то этот модулятор позволяет смешивать в различных пропорциях пространственные и временные параметры импульса света, что в свою очередь, позволяет регулировать скорость этого импульса.

"Теперь мы можем управлять скоростью света, затрагивая непосредственно сам импульс и реорганизовывая заключенную в нем энергию. Реорганизация энергии импульса проявляется в смешивании его пространственных и временных степеней свободы" - пишут исследователи, - "Пока все это является лишь первым шагом обширных будущих исследований, результаты которых могут привести к появлению совершенно новых коммуникационных и других оптических технологий".

Другие интересные новости:

▪ Инновационный модульный смартфон от Google

▪ Научная станция на лыжах

▪ Смартфон Oppo A1 Pro

▪ Пузырьковый душ

▪ Жизнь в метане

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта И тут появился изобретатель (ТРИЗ). Подборка статей

▪ статья Соответствие моделей и шасси телевизоров. Справочник

▪ статья Что было в Америке до ее открытия Колумбом? Подробный ответ

▪ статья Права, обязанности и ответственность субъектов страхования

▪ статья Как добиться эффективности работы биогенератора. Энциклопедия радиоэлектроники и электротехники

▪ статья Регулятор напряжения с ограничителем тока, 12-15 вольт 3 ампера. Энциклопедия радиоэлектроники и электротехники

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:





Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2025