Бесплатная техническая библиотека
Стабилизатор напряжения с защитой от перегрузок, 13,8 вольт 10 ампер. Энциклопедия радиоэлектроники и электротехники

Энциклопедия радиоэлектроники и электротехники / Стабилизаторы напряжения
Комментарии к статье
Стабилизатор обеспечивает максимальный ток нагрузки до 10 ампер при напряжении пульсаций менее 1 мВ, выходное сопротивление 0,01 Ом.

Стабилизатор собран по схеме моста в выходной цепи, образованного резисторами R4, R5, стабилитронами D1, D2 и светодиодом D3.В диагональ моста включен эмиттерный переход транзистора Q3, управляющего регулирующим составным транзистором Q2,Q1. Составной транзистор включен по схеме с общим эмиттером. Более высокое по сравнению с эмиттерным повторителем выходное сопротивление оконечного каскада компенсируется в этой схеме тем, что выходной каскад имеет высокий коэффициент усиления по напряжению, последнее заметно повышает коэффициент петлевого усиления схемы стабилизатора. Так как напряжение на базе управляющего транзистора Q3 по отношению к плюсовому проводу оказывается стабилизированным, то изменения выходного напряжения передаются на эмиттерный переход этого транзистора без ослабления делителем.
Максимальный ток нагрузки задается резистором R4. Ток базы транзистора Q2 не может превысить значения тока, текущего через резистор R4. Следовательно, подбором этого резистора можно установить требуемый ток защиты. Стабилизатор защищен и от коротких замыканий в цепи нагрузки. Ток короткого замыкания зависит от значения запускающего тока, текущего через резистор R2. Этот резистор подбирается при минимальном сопротивлении нагрузки по устойчивому запуску стабилизатора. Такая система обеспечивает надежный запуск стабилизатора, и практически не ухудшает параметров, поскольку в рабочем режиме ток через резистор R2 замыкается через малое сопротивление открытого стабилитрона D2.
Выходное сопротивление стабилизатора определяется дифференциальным сопротивлением стабилитрона D1 деленным на произведение коэффициентов усиления транзисторов Q1,Q2,Q3. Минимальное падение на транзисторе Q1 равно напряжению насыщения коллектор-эмиттер этого транзистора (0,1 Е 0,5 В в зависимости от тока нагрузки).
Напряжение на выходе стабилизатора определяется суммарным напряжением стабилизации стабилитронов D1 и D2 минус падение напряжения на эмиттерном переходе транзистора Q3. Температурные изменения падения напряжения на светодиоде D3 и стабилитроне D1 компенсируются с температурным изменением падения напряжения на эмиттерном переходе транзистора Q3. ТКН стабилизатора в целом на уровне -0,1 mv/градус.
Чтобы снизить зависимость порога срабатывания защиты и тока короткого замыкания от температуры, радиатор регулирующих транзисторов выбирают с запасом по эффективной площади теплового рассеяния не менее 1000 см2.
Автор: Валерий Резвяков, UA3NBW
Смотрите другие статьи раздела Стабилизаторы напряжения.
Читайте и пишите полезные комментарии к этой статье.
<< Назад
Последние новости науки и техники, новинки электроники:
Оптимальная продолжительность сна
12.11.2025
Сон играет ключевую роль в поддержании здоровья, когнитивных функций и общего самочувствия. Несмотря на широко распространенный стереотип о восьмичасовом сне, последние исследования показывают, что оптимальная продолжительность сна для большинства здоровых взрослых ближе к семи часам.
Эволюционный биолог из Гарварда, Дэниел Э. Либерман, утверждает, что традиционная норма восьми часов сна - это скорее культурное наследие индустриальной эпохи, чем биологическая необходимость. По его словам, полевые исследования, проведенные в сообществах, не использующих электричество, показывают, что средняя продолжительность сна составляет 6-7 часов, что значительно отличается от общепринятого стандарта.
Современные эпидемиологические данные подтверждают этот взгляд. Исследования выявили так называемую "U-образную кривую" зависимости между продолжительностью сна и рисками для здоровья. Минимальные показатели заболеваемости и смертности наблюдаются именно у людей, спящих около семи часов в сутки. ...>>
Дефицит кислорода усиливает выброс закиси азота
12.11.2025
Парниковые газы играют ключевую роль в изменении климата, а закись азота (N2O) - один из наиболее опасных среди них. Этот газ не только втрое сильнее углекислого газа в удержании тепла, но и разрушает озоновый слой. Недавнее исследование американских ученых показало, что микробы в зонах с низким содержанием кислорода активно производят N2O, усиливая глобальные климатические риски.
Команда из Университета Пенсильвании изучала прибрежные воды у Сан-Диего и провела наблюдения на глубинах от 40 до 120 метров в Восточной тропической северной части Тихого океана - одной из крупнейших зон дефицита кислорода. Исследователи сосредоточились на том, как морские микроорганизмы превращают нитраты в закись азота.
В ходе работы выяснилось, что существует два пути образования N2O. Один путь начинается с нитрата, другой - с нитрита. На первый взгляд более короткий путь должен быть эффективнее, однако микробы, использующие нитрат, продуцируют больше газа, поскольку этот "сырьевой" источник более д ...>>
Омега-3 помогают молодым кораллам выживать
11.11.2025
Сохранение коралловых рифов становится все более актуальной задачей в условиях глобального изменения климата. Молодые кораллы особенно уязвимы на ранних стадиях развития, когда стрессовые условия и нехватка питательных веществ могут привести к высокой смертности. Недавнее исследование ученых из Технологического университета Сиднея показывает, что специальные пищевые добавки способны существенно повысить выживаемость личинок кораллов.
В ходе работы исследователи разработали особый состав "детского питания" для коралловых личинок. В него вошли масла, богатые омега-3 жирными кислотами, а также важные стерины, необходимые для формирования клеточных мембран. Личинки, получавшие эти добавки, развивались быстрее, становились крепче и демонстрировали более высокую устойчивость к стрессовым факторам.
Особое внимание ученые уделили липидам. Анализ показал, что личинки активно усваивают эти вещества, что напрямую влияет на их жизнеспособность. Стерины, содержащиеся в корме, повышают устойчи ...>>
Случайная новость из Архива Микрофоны, вдохновленные насекомыми
09.05.2023
Что может услышать насекомое? Как ни странно, достаточно много. Хотя они малы и просты, их слуховые системы очень эффективны. Например, с мембраной всего 2 миллиметра в поперечнике пустынная саранча может разлагать частоты, сопоставимые с человеческими возможностями. Понимая, как насекомые воспринимают звук и используя технологию 3D-печати для создания специальных материалов, можно разработать миниатюрные микрофоны, вдохновленные биотехнологиями.
Эндрю Рейд из Университета Стратклайда в Великобритании представил свою работу по созданию микрофонов, которые могут автономно собирать акустические данные с небольшим энергопотреблением. Его презентация "Неестественный слух - 3D-печать функциональных полимеров как путь к микрофонному дизайну, вдохновленному биотехнологиями", состоялась в среду, 10 мая, в рамках 184-й встречи Акустического общества Америки.
"Уши насекомых являются идеальными шаблонами для снижения затрат на энергию и передачу данных, уменьшения размера датчиков и устранения обработки данных", - сказал Рейд.
Команда Рейда черпает вдохновение из ушей насекомых разными способами. На химическом и структурном уровнях исследователи используют технологию 3D-печати для изготовления специальных материалов, имитирующих мембраны насекомых. Эти синтетические мембраны высокочувствительны и эффективны акустическими датчиками. Без 3D-печати традиционным кремниевым микрофонам не хватает гибкости и настройки.
"На изображениях наш микрофон выглядит как любой другой микрофон. Механический элемент - это простая диафрагма, возможно немного необычной эллипсоидной или прямоугольной формы", - сказал Рейд. "Интересные детали происходят на микромасштабе с небольшими вариациями толщины и пористости, и на наномасштабе с вариациями свойств материала, таких как уступчивость и плотность материала".
Больше, чем просто материал, весь процесс сбора данных вдохновлен биологическими системами. В отличие от традиционных микрофонов, собирающих ряд информации, эти микрофоны предназначены для обнаружения определенного сигнала. Этот упрощенный процесс похож на то, как нервные окончания выявляют и передают сигналы. Специализация датчика позволяет ему быстро распознавать триггеры, не потребляя много энергии и не требуя надзора.
Сенсоры, созданные по биологическому принципу, с их небольшим размером, автономной функцией и низким энергопотреблением идеально подходят для опасных или труднодоступных применений, включая места, встроенные в конструкции или внутри тела человека.
|
Другие интересные новости:
▪ Телефон может сделать человека счастливее
▪ Глотайте хирурга
▪ Процессор Toshiba для носимой электроники
▪ Модульный ноутбук Framework Laptop
▪ Искусственное солнце
Лента новостей науки и техники, новинок электроники
Интересные материалы Бесплатной технической библиотеки:
▪ раздел сайта Конспекты лекций, шпаргалки. Подборка статей
▪ статья Веселые задачки. Большая подборка
▪ статья Какими деньгами пользовались ацтеки? Подробный ответ
▪ статья Заместитель директора по спорту. Должностная инструкция
▪ статья Устройство управления фотовспышкой. Энциклопедия радиоэлектроники и электротехники
▪ статья Делители телевизионного сигнала. Энциклопедия радиоэлектроники и электротехники
Оставьте свой комментарий к этой статье:
Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua
2000-2025