Menu English Ukrainian Russian Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Сетевой блок питания для шуруповерта. Энциклопедия радиоэлектроники и электротехники

Бесплатная техническая библиотека

Энциклопедия радиоэлектроники и электротехники / Блоки питания

Комментарии к статье Комментарии к статье

Большой популярностью у любителей и профессионалов пользуются аккумуляторные шуруповерты - надежные, легкие и мощные. Но у них есть существенный недостаток - небольшая емкость аккумуляторной батареи, энергии которой хватает лишь на полчаса интенсивной работы. Далее следует вынужденный перерыв на 3...4 часа для зарядки батареи. Решение этой проблемы - использование сетевого блока питания, ведь большинство работ выполняют в шаговой доступности от электросети.

Сетевой блок питания шуруповерта должен быть надежным, малогабаритным, легким и удобным для применения хранения и транспортировки. Дополнительное требование к блоку питания, обусловленное спецификой его применения, - падающая нагрузочная характеристика, предотвращающая повреждение электродвигателя шуруповерта во время перегрузки.

Сетевой блок питания для шуруповерта
Рис. 1 (нажмите для увеличения)

Всем этим требованиям удовлетворяет предлагаемое устройство, схема которого показана на рис. 1 Основа блока питания - "электронный трансформатор" U1 с номинальной выходной мощностью 60 Вт, предназначенный для питания осветительных ламп напряжением 12 В Частота его выходного напряжения - несколько десятков килогерц Такой трансформатор можно приобрести в магазинах электротоваров.

Трансформатор T1 обеспечивает дополнительную гальваническую развязку от сети и тем самым повышает электробезопасность устройства. Изменением числа витков его первичной обмотки (I) можно подбирать выходное напряжение блока. Повышенная индуктивность рассеяния способствует формированию падающей нагрузочной характеристики Вторичная обмотка (II) с отводом от середины обеспечивает работу двухполупериодного выпрямителя на сборке из двух диодов Шоттки VD1. Потери энергии на диодах в таком выпрямителе вдвое меньше, чем в мостовом. Оксидный конденсатор С1 сглаживает низкочастотные пульсации выпрямленного напряжения а керамический конденсатор С2 с малой собственной индуктивностью - высокочастотные чем облегчает работу конденсатора С1, учитывая, что двухполупериодный выпрямитель удваивает частоту импульсов поступающих с "электронного трансформатора" U1. Резистор R1 задает ток через светодиод HL1, который сигнализирует о подаче напряжения на шуруповерт. Резисторы R2-R7 - минимальная нагрузка "электронного трансформатора" U1, существенно повышающая надежность его работы так как режим холостого хода для него опасен.

Сетевой блок питания для шуруповерта

Сетевой блок питания размещен в корпусе резервного аккумуляторного блока питания, как показано на фото (рис. 2) В середине корпуса вертикально установлена алюминиевая пластина толщиной 3 мм Это шасси всего устройства, используемое как общий провод и теплоотвод диодной сборки VD1. Перед установкой теплоотводящую поверхность сборки VD1 смазывают пастой КПТ-8. Сборку закрепляют на пластине без изолирующей прокладки С одной стороны пластины установлены трансформаторы и выключатель питания SB1, с другой - остальные детали.

Трансформатор Т1 намотан на кольцевом магнитопроводе К28х16х9 из феррита М2000НМА. Для исключения замыкания витков скругляют острые грани магнитопровода мелкой наждачной бумагой. Затем его изолируют, для чего идеально подходит фторопластовая лента ФУМ. Для увеличения индуктивности рассеяния одна обмотка размещена напротив другой. Первичная обмотка состоит из 16 витков, намотанных в два провода ПЭЛ или ПЭВ-2 диаметром 0,8 мм. Вторичная обмотка намотана жгутом из четырех таких же проводов и содержит 12 витков. После намотки определяют начало и конец каждого провода жгута, затем провода объединяют в пары, каждую пару соединяют синфазно параллельно, в результате чего образуются половины вторичной обмотки. Начало одной половины соединяют с концом другой, получая отвод вторичной обмотки.

Диодная сборка Шоттки VD1 - любая с максимальным прямым током не менее 5 А и обратным напряжением не ниже 40 В, например, КД636 с любым буквенным индексом. В крайнем случае можно установить два обычных кремниевых диода КД213А или КД213Б. Конденсатор С1 - оксидный импортный, С2 - КМ-5а, КМ-56 или другой керамический.

Кнопка SB1 - микропереключатель МПЗ-1. Нежелательно использовать вместо него штатный выключатель шуруповерта как из соображений электробезопасности, так и в связи с тем, что у многих шуруповертов выключатель совмещен с регулятором оборотов электродвигателя. Контакты кнопки SB1 - нормально замкнутые. Толкатель кнопки SB1 выполнен из сгоревшего светодиода. В днище корпуса предлагаемого устройства часть толкателя выступает наружу. Между толкателем и кнопкой SB1 установлена пружина.

С устройством работают так. Его размещают и фиксируют в корпусе шуруповерта вместо аккумуляторного блока питания.

Когда шуруповерт с прикрепленным сетевым блоком питания стоит на подставке или иной ровной поверхности толкатель вдавлен внутрь Усилие его нажатия через пружину передается на кнопку SB1, в результате чего она оказывается в нажатом состоянии, ее контакты разомкнуты блок питания отключен от сети.

Когда шуруповерт берут для выполнения работы, пружина отжимает толкатель кнопки SB1 его выпуклая часть выступает из днища корпуса. Кнопка переходит в ненажатое состояние ее контакты замыкаются и подключают блок питания к сети.

Налаживание устройства заключается в отматывании витков первичной обмотки трансформатора Т1 до получения требуемого выходного напряжения 11 14 или 20 В соответственно для шуруповерта с номинальным напряжением 9 6 12 или 18 В.

Учитывая огромное число находящихся в эксплуатации шуруповертов автор надеется, что предлагаемый блок питания будет весьма востребован, к тому же он дешев и собран из доступных деталей. Его может повторить даже начинающий радиолюбитель.

Автор: К. Мороз

Смотрите другие статьи раздела Блоки питания.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Использование Apple Vision Pro во время операций 16.03.2024

Медицинская команда больницы Кромвеля в Лондоне впервые применила Apple Vision Pro в ходе двух операций на позвоночнике. Это событие подтверждает потенциал гарнитуры в качестве медицинского инструмента, изменяющего подход к хирургической практике. Хотя сами врачи не использовали Vision Pro, операционная медсестра работала с виртуальной реальностью, используя очки во время подготовки и выполнения процедур. Гарнитура позволила просматривать виртуальные экраны в операционной, выбирать инструменты и следить за ходом операции. Программное обеспечение, разработанное компанией eXeX, специализирующейся на создании приложений на основе искусственного интеллекта для хирургии, существенно улучшило процесс оказания медицинской помощи пациентам. Использование Apple Vision Pro открывает новые возможности для разработки приложений в сфере здравоохранения, таких как клиническое образование, планирование операций, обучение и медицинская визуализация. Внедрение Apple Vision Pro в медицинскую пр ...>>

Хранение углерода в Северное море 16.03.2024

Министр энергетики Норвегии Терье Осланд объявил о запуске проекта Longship, нацеленного на создание центрального хранилища углекислого газа в Северном море. Этот амбициозный проект оценивается в $2,6 млрд и направлен на применение технологии CCS (углеродного захвата и хранения) для смягчения воздействия климатических изменений. Норвегия уже имеет опыт в области CCS благодаря успешным проектам Sleipner и Snohvit, и сейчас стремится увеличить объем углерода, запечатываемого под морским дном. План Longship предусматривает создание мощности по захвату и хранению 1,5 млн. тонн углерода ежегодно в течение 25 лет. Несмотря на позитивные перспективы, существуют опасения по поводу долгосрочных последствий такого хранения. Однако сторонники проекта утверждают, что морское хранение углерода имеет ряд преимуществ, включая минимальное воздействие на окружающую среду. Проект Longship осуществляется при участии компаний Equinor, Shell и TotalEnergies через совместное предприятие Northern Li ...>>

Выращены мини-органы из амниотической жидкости человека 15.03.2024

Международная команда ученых под руководством профессора Фань Сюлиня из Университета Чжэцзян разработала уникальный способ выращивания мини-органов из клеток, обнаруженных в амниотической жидкости человека. Этот значительный прорыв в медицине может привести к улучшению диагностики и лечения врожденных заболеваний. Органоиды, представляющие собой трехмерные клеточные структуры, имитирующие органы в меньшем масштабе, были выращены из клеток легких, почек и тонкого кишечника, найденных в амниотической жидкости. Этот метод открывает новые возможности для изучения различных состояний плода и может стать ключом к ранней диагностике и лечению врожденных дефектов. Хотя пока не проводились попытки использования этого метода в лечении, ученые надеются, что их исследования в будущем помогут бороться с серьезными врожденными заболеваниями, которые затрагивают миллионы новорожденных ежегодно. Этот прорыв может изменить практику медицинских вмешательств, позволяя диагностировать и лечить врожд ...>>

Случайная новость из Архива

Неразрушимое композитное стекло для смартфонов и телевизоров 14.11.2021

Команда ученых разработала новую технологию производства сверхпрочного композитного стекла для смартфонов и других устройств.

Сотрудники Университета Квинсленда (Австралия), Университета Лидса (Великобритания), Университета Париж-Сакле (Франция) и Кембриджского университета (Великобритания). По словам авторов, они смогли обработать нанокристаллы стекла таким образом, что теперь оно не бьется и обеспечивает четкое изображение.

Излучающие материалы сделаны из кристаллов на основе галогенидов свинца, которые называются перовскитами. Они поглощают солнечный свет и преобразовывают его в электричество, помогая экономить энергию. Из них, например, делают дешевые солнечные панели нового поколения. Главным недостатком перовскитов является их чувствительность к свету, теплу, воде и даже воздуху - обычный водяной пар уничтожает перовскиты за считанные секунды. Команда исследователей нашла способ, как связывать нанокристаллы пористого стекла и защищать их от воздействия окружающей среды.

Этот процесс является ключевым для стабилизации материалов, повышения их эффективности и предотвращения вымывания токсичных ионов свинца из материалов.

Технологию можно реализовать в разных сферах, в том числе создавать из перовскитовых кристаллов экраны, превосходящие QLED (светодиодные дисплеи с квантовыми точками) по качеству изображения и производительности. Такие устанавливают на самые лучшие современные телевизоры.

"Мы можем не только сделать эти нанокристаллы более прочными, но и настроить их оптоэлектронные свойства таким образом, что эффективность излучения света будет просто фантастической", - отметили ученые.

Другие интересные новости:

▪ Микроконтроллер AT90SC12872RCFT для устройств идентификации личности

▪ Счастье продлевает жизнь

▪ Умная стиральная машина Xiaomi

▪ Электронная сигарета может взломать компьютер

▪ Гаджеты перед сном вредят здоровью

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Электрические счетчики. Подборка статей

▪ статья Франсуа Фенелон. Знаменитые афоризмы

▪ статья Где и когда 150 человек были расстреляны солдатами, одетыми в костюмы Санта Клауса? Подробный ответ

▪ статья Мамей сапота. Легенды, выращивание, способы применения

▪ статья Способ установки длительности пауз в устройствах управления стеклоочистителями. Энциклопедия радиоэлектроники и электротехники

▪ статья Микроволновая печь. Энциклопедия радиоэлектроники и электротехники

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:





All languages of this page

Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2024