Menu English Ukrainian Russian Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Сетевой блок питания для цифровой фотокамеры. Энциклопедия радиоэлектроники и электротехники

Бесплатная техническая библиотека

Энциклопедия радиоэлектроники и электротехники / Блоки питания

Комментарии к статье Комментарии к статье

В современных цифровых фотокамерах быстро разряжаются элементы питания. Например, фотокамера Canon А530 в режиме просмотра снимков потребляет ток не больше 0,2 А. Зато режим фотосъемки без вспышки требует от источника питания ток не менее 0,4 А, а со вспышкой - уже не меньше 0,7 А. В этой фотокамере используются два гальванических элемента питания типоразмера АА, которые могут быть оперативно заменены. В большинстве других фотокамер предусмотрено питание только от аккумуляторов. Это еще одна серьезная проблема большинства современных устройств. Разрядка штатного аккумулятора не дает никакой возможности дальнейшей эксплуатации фотокамеры. Вот тут-то и выручает быстрая замена элементов питания. Наличие в кармане двух запасных свежих гальванических элементов легко решает проблему преодоления внезапной разрядки аккумуляторов.

При использовании фотовспышки гальваническими элементами уже невозможно запастись - они быстро разряжаются. Высококачественные элементы служат дольше, но и цены на них в последнее время резко возросли. Вскоре стало ясно, что эксплуатация фотокамеры от гальванических элементов весьма разорительна.

Имеющиеся энергоемкие малогабаритные аккумуляторы емкостью 2650 мА ч, естественно, выручают. Но они тоже быстро разряжаются. Главное, что это происходит неожиданно. Есть еще один серьезный недостаток при эксплуатации фотокамеры от 1,2-вольтных аккумуляторов. Задолго до полной разрядки аккумулятора до 1 В фотокамера перестает функционировать. Она просто "требует" заменить элементы питания соответствующей надписью на дисплее и после этого автоматически выключается.

Изъятые аккумуляторы имеют напряжение 1,1... 1,15 В при токе нагрузки 0,5 А, т. е. налицо недоиспользованность аккумуляторов. Причем весьма солидная. Неизвестно, как заряжать эти аккумуляторы, поскольку не знаем, какой заряд им следует сообщить. И тут уже ничего не остается, как перед зарядкой принудительно разряжать недоиспользованные аккумуляторы до напряжения 0,9... 1 В. На это уходит несколько часов. Как видим, налицо невозможность максимального использования энергии как аккумуляторов, так и гальванических элементов.

Поэтому в стационарных условиях эксплуатации целесообразно фотокамеру питать от электросети через соответствующий блок. Главное требование к нему - надежность. Ни при каких обстоятельствах он не должен повредить дорогостоящую фотокамеру.

Сетевой блок питания для цифровой фотокамеры
Рис. 1 (нажмите для увеличения)

С учетом этого требования разработано устройство, схема которого показана на рисунке. Это линейный компенсационный стабилизатор напряжения с ограничением выходного тока и узлом защиты от аварийного повышения выходного напряжения. Сетевой трансформатор Т1, диодный мост VD1 -VD4 и сглаживающий конденсатор С1 применены от блока питания промышленного изготовления БП 12/10 (12 В, 10 Вт).

В устройстве применена микросхема параллельного стабилизатора TL431 (DA1). На ее управляющий вход поступает напряжение с делителя R6R4, резисторы которого подобраны так, что при номинальном выходном напряжении на резисторе R4 будет 2,5 В. Если выходное напряжение по каким-либо причинам превысит номинальное, ток через микросхему DA1 резко возрастет, что приведет к уменьшению напряжения на базе регулирующего транзистора VT1 и, соответственно, восстановлению номинального выходного напряжения стабилизатора. С целью обеспечения надежности транзистор VT1 выбран с большим запасом по напряжению, току и мощности.

Узел ограничения выходного тока собран на транзисторе VT2 и резисторах R3, R5. Резистор R5 - датчик тока нагрузки. В момент, когда падение напряжения на нем превышает 0,6 В, транзистор VT2 открывается и сдерживает рост тока базы транзистора VT1, в результате чего выходной ток ограничен на уровне 3 А. Транзистор VT2 выбран мощным тоже из соображения надежности. Были случаи выхода из строя маломощных транзисторов (из серий КТ315 и КТ503) в аналогичных защитных узлах. Но повреждений мощных транзисторов не было.

Достоинства предлагаемого стабилизатора напряжения - включение датчика тока в разрыв плюсового, а не минусового (общего) провода питания, а также отсутствие "просадки" выходного напряжения при подходе тока нагрузки к пределу ограничения.

Несмотря на высокую надежность стабилизатора напряжения, если он все-таки выйдет из строя, фотокамера может быть повреждена повышенным напряжением питания. Чтобы не допустить этого, применен узел защиты на транзисторе VT3, стабилитроне VD5 и резисторе R7. При аварийном повышении выходного напряжения открываются стабилитрон VD5 и транзистор VT3, ток коллектора которого пережигает предохранитель FU2. Такие узлы хорошо проверены автором для защиты нитей накала кинескопов телевизоров при их питании постоянным током.

Поскольку предлагаемое устройство предназначено для домашнего пользования, то не ставилась задача минимизации его массогабаритных показателей. Поэтому оно размещено в корпусе от упомянутого выше блока БП 12/10, который в наше время удается без особого труда очень дешево приобрести. Вторичная обмотка сетевого трансформатора перемотана: число ее витков уменьшено примерно на 30 %, при этом напряжение обмотки снизилось до 7,7 В. Можно также применить любой сетевой трансформатор мощностью 5...10 Вт с обмоткой на 6...6,3 В, в том числе накальный для ламповой техники.

Допустимо использовать и современные малогабаритные трансформаторы. Но у многих из них заявленные характеристики не соответствуют реальным. Пригоден только такой трансформатор, обмотка которого способна обеспечить выходной ток 2 А при напряжении не менее 6 В. Подойдет даже трансформатор с обмоткой всего на 5 В, если в выпрямительном мосте VD1 - VD4 применить диоды с меньшим падением напряжения, например, германиевые из серий Д302-Д305 или диоды Шоттки 1N5822, КД2998А-КД2998Г.

Оксидные конденсаторы могут быть любыми, емкость конденсатора С1 должна быть не менее 1000 мкФ. Датчик тока - резистор R5 - С5-16МВ-5. В случае необходимости он может быть самодельным из нихромовой проволоки. Остальные резисторы - МЛТ-0,25.

Блок питания смонтирован на макетной плате. Диоды выпрямительного моста КД202В (VD1-VD4) можно заменить другими с максимальным прямым током не менее 3 А, например, из серий КД213, Д242, Д243, или применить готовые мосты BR305 или BR605.

Регулирующий транзистор КТ829Б (VT1) размещен на ребристом теплоотводе с площадью охлаждающей поверхности около 150 см2. Этот транзистор - составной. Он может быть любым из серии КТ829 или КТ827, а также зарубежным BDX53C. Транзистор VT2.

любой из серий КТ815, КТ817. Транзистор VT3 - любой мощный кремниевый низкочастотный структуры n-p-n с максимальным постоянным током коллектора не меньше 5 А, например, из серий КТ803, КТ808, КТ819, BD911. Этот транзистор установлен без теплоотвода, так как он не успевает нагреться за время перегорания предохранителя FU2. Отсюда следует, что суррогатные предохранители в данной конструкции применять нельзя.

Светодиод HL1 - любого цвета свечения. Стабилитрон КС133А (VD5) можно заменить на КС139А или зарубежными BZX55C3V3, BZX55C3V6, BZX55C3V9.

Налаживание блока питания, собранного из исправных деталей, несложно. Но учитывая, что к нему подключают дорогостоящую нагрузку, к этому процессу следует отнестись весьма ответственно. Вначале отдельно проверяют защитный узел на транзисторе VT3. На время налаживания этот транзистор устанавливают на теплоотвод с площадью охлаждающей поверхности 200 см2. Узел подключают к лабораторному блоку питания с плавно регулируемым выходным напряжением 0... 15 В и ограничением выходного тока до ЗА. При отсутствии лабораторного блока питания можно воспользоваться налаживаемым стабилизатором напряжения, для чего постоянный резистор R4 временно заменяют переменным, включенным как реостат. Необходимо убедиться, что транзистор VT3 надежно открывается и замыкает выход источника питания при напряжении не более 4,5 В.

Затем проверяют защиту по выходному току. Необходимый уровень ограничения тока устанавливают подбором сопротивления датчика тока - резистора R5. После этого при необходимости подбирают сопротивление резистора R4, чтобы установить выходное напряжение в пределах 3...3,2 В. Наконец, подключая и отключая нагрузку сопротивлением 4 Ом к выходу, проверяют стабильность выходного напряжения. Оно не должно изменяться более чем на 10 мВ. Напряжение измерено прибором В7-38 непосредственно на плате.

От предлагаемого устройства можно одновременно питать две фотокамеры. За время эксплуатации (около двух лет) замечаний к его работе не было.

Для большей надежности защиты фотокамеры от аварийного повышения выходного напряжения коллектор транзистора VT3 лучше подключить не к выходу стабилизатора напряжения, а к его входу - точке соединения верхних по схеме выводов резисторов R1, R2, коллектора транзистора VT1 и правого по схеме вывода предохранителя FU2.

Автор: А. Зызюк

Смотрите другие статьи раздела Блоки питания.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Использование Apple Vision Pro во время операций 16.03.2024

Медицинская команда больницы Кромвеля в Лондоне впервые применила Apple Vision Pro в ходе двух операций на позвоночнике. Это событие подтверждает потенциал гарнитуры в качестве медицинского инструмента, изменяющего подход к хирургической практике. Хотя сами врачи не использовали Vision Pro, операционная медсестра работала с виртуальной реальностью, используя очки во время подготовки и выполнения процедур. Гарнитура позволила просматривать виртуальные экраны в операционной, выбирать инструменты и следить за ходом операции. Программное обеспечение, разработанное компанией eXeX, специализирующейся на создании приложений на основе искусственного интеллекта для хирургии, существенно улучшило процесс оказания медицинской помощи пациентам. Использование Apple Vision Pro открывает новые возможности для разработки приложений в сфере здравоохранения, таких как клиническое образование, планирование операций, обучение и медицинская визуализация. Внедрение Apple Vision Pro в медицинскую пр ...>>

Хранение углерода в Северное море 16.03.2024

Министр энергетики Норвегии Терье Осланд объявил о запуске проекта Longship, нацеленного на создание центрального хранилища углекислого газа в Северном море. Этот амбициозный проект оценивается в $2,6 млрд и направлен на применение технологии CCS (углеродного захвата и хранения) для смягчения воздействия климатических изменений. Норвегия уже имеет опыт в области CCS благодаря успешным проектам Sleipner и Snohvit, и сейчас стремится увеличить объем углерода, запечатываемого под морским дном. План Longship предусматривает создание мощности по захвату и хранению 1,5 млн. тонн углерода ежегодно в течение 25 лет. Несмотря на позитивные перспективы, существуют опасения по поводу долгосрочных последствий такого хранения. Однако сторонники проекта утверждают, что морское хранение углерода имеет ряд преимуществ, включая минимальное воздействие на окружающую среду. Проект Longship осуществляется при участии компаний Equinor, Shell и TotalEnergies через совместное предприятие Northern Li ...>>

Выращены мини-органы из амниотической жидкости человека 15.03.2024

Международная команда ученых под руководством профессора Фань Сюлиня из Университета Чжэцзян разработала уникальный способ выращивания мини-органов из клеток, обнаруженных в амниотической жидкости человека. Этот значительный прорыв в медицине может привести к улучшению диагностики и лечения врожденных заболеваний. Органоиды, представляющие собой трехмерные клеточные структуры, имитирующие органы в меньшем масштабе, были выращены из клеток легких, почек и тонкого кишечника, найденных в амниотической жидкости. Этот метод открывает новые возможности для изучения различных состояний плода и может стать ключом к ранней диагностике и лечению врожденных дефектов. Хотя пока не проводились попытки использования этого метода в лечении, ученые надеются, что их исследования в будущем помогут бороться с серьезными врожденными заболеваниями, которые затрагивают миллионы новорожденных ежегодно. Этот прорыв может изменить практику медицинских вмешательств, позволяя диагностировать и лечить врожд ...>>

Случайная новость из Архива

Красное вино, белое вино, железо 19.03.2010

Всем известно правило: к мясным блюдам полагается красное вино, а к рыбным - только белое. Японцы, в больших количествах потребляющие кроме рыбы и другие морепродукты, знают, что и они с красным вином дают неприятное послевкусие. Японские химики под руководством Такаюки Тамуры решили выяснить, в чем тут причина.

Опытным дегустаторам предлагали пробовать красные и белые вина, закусывая их морским гребешком (это такой моллюск), и просили отметить наличие неприятного привкуса по шкале от 0 (его нет) до 4 (сильный). Оказалось, что вина, дающие с морепродуктом наиболее сильный привкус, содержат много железа.

Для проверки химики удалили железо из содержавших его вин и добавили соли железа в лишенные его сорта. Действительно, и они стали давать с гребешком неприятный привкус. Попробовали добавлять или удалять другие металлы - цинк, марганец и медь, но они не влияли никак.

Экспериментаторы пришли к выводу, что железо реагирует с ненасыщенными жирными кислотами, которых много в рыбе и морепродуктах, а при этом возникают летучие соединения с неприятным вкусом и запахом.

Другие интересные новости:

▪ О пользе чтения

▪ Телефон-микроскоп

▪ Космический туризм Virgin Galactic

▪ Перчатка-телефон

▪ Подлунная пещера

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Микроконтроллеры. Подборка статей

▪ статья Герберт Маркузе. Знаменитые афоризмы

▪ статья Как долго длится самый длинный год? Подробный ответ

▪ статья Моторист дизельной подстанции. Типовая инструкция по охране труда

▪ статья Кабельный пробник на РIC-контроллерах. Энциклопедия радиоэлектроники и электротехники

▪ статья Генератор подмагничивания. Энциклопедия радиоэлектроники и электротехники

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:





All languages of this page

Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2024