Menu English Ukrainian Russian Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Зарядная приставка для мультиметра. Энциклопедия радиоэлектроники и электротехники

Бесплатная техническая библиотека

Энциклопедия радиоэлектроники и электротехники / Блоки питания

Комментарии к статье Комментарии к статье

Использование для питания мультиметра никель-металлгидридного аккумулятора с преобразователем [1] позволяет существенно сэкономить на довольно дорогих элементах питания. Однако аккумулятор время от времени все же приходится заряжать. Для зарядки аккумуляторов разработано много устройств, но большинство из них весьма сложны вследствие своей универсальности. Кроме того, за некоторыми необходим постоянный контроль, поскольку при их эксплуатации не исключена перезарядка аккумулятора, приводящая к его перегреву и снижению срока службы.

Во многих случаях вполне можно обойтись простой приставкой, питаемой от зарядного устройства (ЗУ) мобильного телефона. Как правило, ЗУ представляет собой довольно мощный и малогабаритный, а в большинстве моделей даже стабилизированный источник питания, снабженный защитой по току, потребляемому нагрузкой. Большую часть времени ЗУ обычно лежит без дела, и имеет смысл найти ему дополнительное применение.

Предлагаемая приставка представляет собой стабилизатор напряжения и собрана на двух транзисторах. Сначала ток зарядки разряженного аккумулятора постоянный, а затем, по мере зарядки, уменьшается по закону, близкому к экспоненциальному [2], и при полной зарядке аккумулятора ограничивается на безопасном уровне. Приставка рассчитана на питание от ЗУ для телефона FLY со стабилизированным выходным напряжением 5 В. Разумеется, подойдут и ЗУ других телефонов. Схема приставки показана на рис. 1.

Зарядная приставка для мультиметра
Рис. 1

На транзисторе VT2 собран регулирующий элемент, на транзисторе VT1 - управляющий. Напряжение стабилизации определяется суммой падения напряжения на диоде VD1 и на эмиттер-ном переходе транзистора VT1, что позволяет обойтись без резистивного делителя на выходе приставки. С указанными на схеме элементами выходное напряжение приблизительно равно 1,25...1,3 В. В небольших пределах его можно изменить, используя диоды других типов. Кроме того, на выходное напряжение влияет ток через резистор R2.

Для ограничения тока зарядки служит резистор R3. Применение резистора обусловлено его более высокой надежностью по сравнению с транзистором. К тому же в случае выхода резистора из строя аккумулятор оказывается практически отключенным от ЗУ. При указанном на схеме сопротивлении резистора R3 выходной ток приставки ограничен на уровне примерно 100 мА.

Работает приставка так: при подаче питания, если аккумулятор разряжен, транзистор VT1 закрыт. Резистор R2 определяет ток базы транзистора VT2, который находится в состоянии насыщения, а выходной ток приставки определяется сопротивлением резистора R3. По мере зарядки аккумулятора напряжение на базе транзистора VT1 увеличивается и он начинает открываться. При этом транзистор VT2 сначала выходит из насыщения, а затем постепенно закрывается, обеспечивая "экспоненциальную" выходную характеристику приставки.

При полностью заряженном аккумуляторе транзистор VT2 закрыт, ток резистора R2 протекает через открытый транзистор VT1 и диод VD1. Последнее обстоятельство накладывает некоторые ограничения на эксплуатацию приставки с разными ЗУ. Дело в том, что многие ЗУ особенно дешевых моделей, могут иметь разброс по напряжению от 4,6 до 9 В, т. е. почти в два раза. В этом случае выходное напряжение приставки может колебаться от 1,2 до 1,5 В, что, конечно же, недопустимо. Tакже может существенно изменяться зарядный ток. В этом случае резистор R2 нужно заменить генератором тока (примерно 3...5 мА), например, на полевом транзисторе. Остальные элементы особых пояснений не требуют: резистор R1 и светодиод HL1 служат для контроля напряжения питания (многие ЗУ его не имеют), резистор R4 и микроамперметр РА1 - для контроля тока и степени зарядки аккумулятора.

В приставке применены резисторы МЛТ, кроме резистора R3, - он импортный мощностью 2 Вт. Вместо КТ315И (VT1) можно использовать любые транзисторы серий КТ315, КТ3102, а вместо КТ630А (VT2) - любые серии КТ630 и мощные КТ815, КТ817. В измерителе тока применен индикатор уровня записи М88501 с током полного отклонения 300 мкА от магнитофона. Шкалу микроамперметра градуируют, подбирая резистор R4. Конечное деление шкалы соответствует току 100 мА. Разъем ХS1 может быть любым, разъем ХР1 придется подобрать аналогичный разъему телефона или ЗУ. Все детали приставки смонтированы на печатной плате из фольгированного с одной стороны стеклотекстолита, чертеж которой представлен на рис. 2. Плата изготовлена методом вырезания проводников скальпелем или резаком. Она размещена в корпусе, склеенном из полистирола толщиной 3 мм, его внешний вид показан на рис. 3.

Зарядная приставка для мультиметра
Рис. 2

Зарядная приставка для мультиметра
Рис. 3

Налаживание приставки производят в следующем порядке: на вход приставки подают питание и проверяют напряжение на ее выходе. Оно должно быть около 1,3 В. Разумеется, должен светиться светодиод HL1. Если напряжение сильно отличается от указанного, можно попробовать подобрать вместо КД510А диоды других серий или подобрать резистор R2. Затем выход приставки замыкают амперметром на ток 1 А. Если ток зарядки слишком велик, можно увеличить сопротивление резистора R3. Затем подбором резистора R4 устанавливают стрелку микроамперметра РА1 на конечное деление и градуируют шкалу.

Необходимо отметить, что шкала примененного микроамперметра М88501 нелинейная, поэтому погрешность измерения может достигать 10...12%. Поскольку микроамперметр используется, скорее, как индикатор зарядки аккумулятора, можно вообще отказаться от числовой градуировки, заменив ее цветовой: участок между нулевым и первым делениями шкалы (рис. 3) закрашивают зеленым цветом, между отметками 70 и 100 мА - красным, остальную часть шкалы - желтым. Следует отметить, что подобные приборы выпускались с самыми разными шкалами, в том числе в виде цветных секторов или постепенно расширяющейся полосы. В подобных случаях удобно использовать уже имеющуюся шкалу, просто переписав на ней цифры или закрасив уже готовые участки.

Приставка эксплуатируется уже более года совместно с преобразователем [1] и ни разу не вызвала никаких нареканий.

Примечание. Напряжения 1,25...1,3 В, указанного в статье, недостаточно для полной зарядки никель-металлгидридного аккумулятора. Чтобы полностью зарядить такой аккумулятор, требуется напряжение 1,38...1,45 В (в зависимости от конкретного экземпляра). Для этого диод КД510А (VD1) можно заменить двумя-тремя диодами Шоттки, например 1N5817, или резистором, подобрав его сопротивление.

Литература

  1. Герасимов Е. Преобразователь для питания цифрового мультиметра. - Радио, 2014, №9, с. 20, 21.
  2. Дорофеев М. Вариант зарядного устройства. - Радио, 1993, № 2, с. 12, 13.

Автор: Е. Герасимов

Смотрите другие статьи раздела Блоки питания.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Использование Apple Vision Pro во время операций 16.03.2024

Медицинская команда больницы Кромвеля в Лондоне впервые применила Apple Vision Pro в ходе двух операций на позвоночнике. Это событие подтверждает потенциал гарнитуры в качестве медицинского инструмента, изменяющего подход к хирургической практике. Хотя сами врачи не использовали Vision Pro, операционная медсестра работала с виртуальной реальностью, используя очки во время подготовки и выполнения процедур. Гарнитура позволила просматривать виртуальные экраны в операционной, выбирать инструменты и следить за ходом операции. Программное обеспечение, разработанное компанией eXeX, специализирующейся на создании приложений на основе искусственного интеллекта для хирургии, существенно улучшило процесс оказания медицинской помощи пациентам. Использование Apple Vision Pro открывает новые возможности для разработки приложений в сфере здравоохранения, таких как клиническое образование, планирование операций, обучение и медицинская визуализация. Внедрение Apple Vision Pro в медицинскую пр ...>>

Хранение углерода в Северное море 16.03.2024

Министр энергетики Норвегии Терье Осланд объявил о запуске проекта Longship, нацеленного на создание центрального хранилища углекислого газа в Северном море. Этот амбициозный проект оценивается в $2,6 млрд и направлен на применение технологии CCS (углеродного захвата и хранения) для смягчения воздействия климатических изменений. Норвегия уже имеет опыт в области CCS благодаря успешным проектам Sleipner и Snohvit, и сейчас стремится увеличить объем углерода, запечатываемого под морским дном. План Longship предусматривает создание мощности по захвату и хранению 1,5 млн. тонн углерода ежегодно в течение 25 лет. Несмотря на позитивные перспективы, существуют опасения по поводу долгосрочных последствий такого хранения. Однако сторонники проекта утверждают, что морское хранение углерода имеет ряд преимуществ, включая минимальное воздействие на окружающую среду. Проект Longship осуществляется при участии компаний Equinor, Shell и TotalEnergies через совместное предприятие Northern Li ...>>

Выращены мини-органы из амниотической жидкости человека 15.03.2024

Международная команда ученых под руководством профессора Фань Сюлиня из Университета Чжэцзян разработала уникальный способ выращивания мини-органов из клеток, обнаруженных в амниотической жидкости человека. Этот значительный прорыв в медицине может привести к улучшению диагностики и лечения врожденных заболеваний. Органоиды, представляющие собой трехмерные клеточные структуры, имитирующие органы в меньшем масштабе, были выращены из клеток легких, почек и тонкого кишечника, найденных в амниотической жидкости. Этот метод открывает новые возможности для изучения различных состояний плода и может стать ключом к ранней диагностике и лечению врожденных дефектов. Хотя пока не проводились попытки использования этого метода в лечении, ученые надеются, что их исследования в будущем помогут бороться с серьезными врожденными заболеваниями, которые затрагивают миллионы новорожденных ежегодно. Этот прорыв может изменить практику медицинских вмешательств, позволяя диагностировать и лечить врожд ...>>

Случайная новость из Архива

Самый большой в мире внешний дисплей от Samsung 01.04.2023

Компания Samsung Electronics в партнерстве с Нью-Йорком Мэтс Высшей бейсбольной лиги поставила огромный цифровой дисплей на Citi Field в Нью-Йорке. Этот экран не только самый большой в мире, но и яркий, обеспечивая непревзойденные визуальные впечатления для всех, кто посещает игры на стадионе.

Светодиодный экран, имеющий огромную площадь 17400 квадратных футов (это примерно 1616,5 квадратных метров), трудно не заметить. В дополнение к этому гиганту, также меньший светодиодный экран площадью 6900 квадратных футов (примерно 641 квадратный метр).

С осени 2022 года Samsung Electronics установила на стадионе более 29,8 тысяч квадратных футов новых светодиодных дисплеев, доведя общее количество пикселей до потрясающих 40 миллионов.

Благодаря новой технологии, болельщики никогда не пропустят ни одного момента действия, независимо от того, где они находятся на стадионе. Экраны способны отображать игру в потрясающем разрешении 4K, а также результаты, статистику и другую полезную информацию.

Другие интересные новости:

▪ Синтетические нервы работают на свету

▪ Сыщик на телефоне

▪ Голова растет

▪ Транзистор киборга

▪ Мобильный телефон, работающий без сотовых операторов

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Опыты по физике. Подборка статей

▪ статья Бегут, как крысы с тонущего корабля. Крылатое выражение

▪ статья Какое правило установил Петр I для выступающих в Сенате? Подробный ответ

▪ статья Комитеты (комиссии) по охране труда

▪ статья Как рассчитать дроссель с сердечником. Энциклопедия радиоэлектроники и электротехники

▪ статья Синтезатор частоты для радиостанции диапазона 144-146 МГц. Энциклопедия радиоэлектроники и электротехники

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:





All languages of this page

Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2024