Menu English Ukrainian Russian Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Релейное устройство контроля напряжения в электросети. Энциклопедия радиоэлектроники и электротехники

Бесплатная техническая библиотека

Энциклопедия радиоэлектроники и электротехники / Блоки питания

Комментарии к статье Комментарии к статье

Сегодня в радиолюбительской литературе и в Интернете можно найти множество описаний самодельных устройств, следящих за напряжением в электрической сети и отключающих питающиеся от нее электроприборы в случае выхода напряжения за допустимые для них пределы. Как правило, в этих устройствах применяют микроконтроллеры, операционные усилители и другие современные высокотехнологичные электронные компоненты. Но еще совсем недавно эту задачу успешно решали более простыми средствами. Например, с помощью электромагнитных реле. Одну из таких "ретро"-конструкций описывает автор в предлагаемой статье.

Несмотря на то что стандартами (например, [1]) установлены довольно жесткие нормы стабильности напряжения в бытовых электросетях, по разным причинам оно довольно часто выходит за допустимые пределы. Это представляет опасность для бытовых электроприборов, которых сегодня очень много в любой квартире или жилом доме. Особенно для тех, что подключены к сети практически постоянно. Помогает здесь только наличие автоматического прибора, непрерывно контролирующего напряжение и отключающего все потребители от сети в случае его опасного повышения или понижения.

Когда у меня возникла потребность в таком автомате, те из них, описания которых для самостоятельного изготовления удалось найти (например, [2]), показались мне слишком сложными. Я решил разработать и изготовить свой. Его схема показана на рис. 1. При напряжении ниже 198 В (220 В-10 %) он выключает электросеть квартиры, а при его возвращении в норму вновь включает ее. При превышении значения 242 В (220 В+10 %) сеть также выключается, но ее работа не восстанавливается до тех пор, пока хозяин квартиры, убедившись по показаниям вольтметра PV1 в том, что напряжение в норме, не нажмет на кнопку SB1 "Пуск". Такой отход от полной автоматизации лучше обеспечивает безопасность и вполне допустим, так как превышения максимального напряжения случаются нечасто. За три года непрерывной работы автомата было множество отключений по занижению напряжения, но всего восемь раз - по его превышению. Они происходили в основном в ночное время, иногда во время грозы.

Релейное устройство контроля напряжения в электросети
Рис. 1 (нажмите для увеличения)

Как видно из схемы, два понижающих трансформатора T1 и T2 включены последовательно по первичным и вторичным обмоткам, поэтому они легко выдерживают повышение сетевого напряжения до 380 В и более, что случается при обрыве нейтрали трехфазной сети. Выпрямитель для питания реле K3, контакты которого K3.1, выдерживающие ток до 20 А, подключают потребители к сети и отключают их от нее, выполнен по мостовой схеме на диодах VD4-VD8 и питается от соединенных последовательно обмоток III трансформаторов с суммарным номинальным напряжением 20 В. О наличии напряжения на выходе этого выпрямителя, а следовательно, и в питающей сети сигнализирует светодиод HL1.

Выпрямитель для контроля значения напряжения собран на диодах VD1 - VD4 также по мостовой схеме. Он питается от последовательно соединенных обмоток II трансформаторов (их суммарное номинальное напряжение 12,6 В). Особенность этого выпрямителя в том, что его сглаживающий конденсатор C1 имеет сравнительно небольшую емкость, чтобы изменения напряжения отслеживались без задержки.

При напряжении в сети, большем нижнего порога, к цепи светодиод HL3 - стабилитрон VD11 - обмотка поляризованного реле K1 приложено напряжение, превышающее сумму прямого падения напряжения на светодиоде, напряжения стабилизации стабилитрона и напряжения срабатывания реле. Контакты Я и Л реле K1 замкнуты. Если в это время замкнуты также контакты Я и П реле K2, то срабатывает реле K3, подключая потребители к сети.

Регулировкой подстроечного резистора R9 добиваются того, чтобы при уменьшении напряжения в сети ниже допустимых 198 В напряжение на стабилитроне VD11 становилось меньше его напряжения стабилизации и он закрывался, прекращая ток через обмотку реле K1. В результате контакты Я и Л этого реле размыкают цепь обмотки реле K3. Оно отключает потребители от сети до тех пор, пока напряжение в ней не придет в норму.

Канал контроля превышения напряжения построен аналогично, но пороговым элементом в нем служит стабилитрон VD12, порог срабатывания (242 В) устанавливают подстроечным резистором R11, а при его превышении контакты реле K2 размыкают цепь обмотки реле K3 и включают светодиод HL2.

В качестве реле K2 использовано двустабильное поляризованное реле РП4, отличающееся тем, что его контакты самостоятельно не возвращаются в исходное положение при снятии напряжения с обмоток. Чтобы перебросить якорь реле в ту или иную сторону, нужно обязательно подать на одну из обмоток импульс напряжения соответствующей полярности. Поэтому для возврата реле K2 в исходное состояние после срабатывания в устройстве предусмотрена кнопка SB1, на которую нажимают, чтобы вновь подключить к сети потребители электроэнергии, отключенные по превышению напряжения. Нажимать на эту кнопку приходится иногда и для приведения устройства в рабочее состояние после подключения к сети, поскольку начальное положение контактов реле K2 неизвестно и может быть любым.

Стабилитроны VD9 и VD10 ограничивают напряжение, подаваемое на обмотки реле K1 и K2 после их срабатывания, что не позволяет току в этих обмотках превысить допустимые значения.

Автор применил в конструкции два унифицированных трансформатора питания ТПП261-127/220-50 с броневыми магнитопроводами [3]. В качестве обмоток I использованы первичные обмотки этих трансформаторов (выводы 2 и 9 с перемычкой между выводами 3 и 7). Для образования обмоток II установлены перемычки между выводами 12 и 19 трансформаторов, а напряжение снимается с выводов 11 и 20. Выводы обмотки III - 15 и 16.

Вместо двух трансформаторов Т1 и Т2 возможно применить один, выдерживающий первичное напряжение до 380 В. Он может быть намотан самостоятельно на магнитопроводе ШЛ20х40. Обмотка I должна иметь 2700 витков провода ПЭВ-2 диаметром 0,21 мм, обмотка II -155 витков провода ПЭВ-2 диаметром 0,35 мм, а обмотка III - 254 витка такого же провода. При первичном напряжении 220 В напряжения на обмотках II и III должны быть соответственно 12,6 и 20 В.

Реле K1 - двухпозиционное одностабильное с преобладанием к правому контакту поляризованное реле РП7 (исполнение РС4.521.005). Для получения обмотки сопротивлением около 600 Ом его обмотки II (470 Ом) и III (140 Ом) соединены последовательно, для чего между выводами 4 и 6 колодки реле установлена перемычка. Можно применить реле того же типа исполнений РС4.521.019 с сопротивлением обмотки 480 Ом или РС4.521.012 с сопротивлением обмотки 700 Ом.

Реле K2 - двухпозиционное двустабильное поляризованное реле РП4 (исполнение РС4.520.004). Его обмотки 1-IV сопротивлением по 130 Ом соединены последовательно, для чего установлены перемычки между контактами 2-3, 4-8 и 6-7 колодки реле. Используется также обмотка VII сопротивлением 2250 Ом. Можно применить реле исполнений РС4.520.011 с обмотками сопротивлением 460 и 2700 Ом или РС4.520.012 с обмотками сопротивлением 500 и 830 Ом.

Справочные данные поляризованных реле РП4 и РП7 можно найти в [4]. При подборе замен следует иметь в виду, что обмотки поляризованных реле разных исполнений могут быть выведены на разные контакты их колодок. Разброс сопротивления обмоток одинаковых реле может достигать ±15...20 %.

При отсутствии нужного реле РП7 вместо него можно использовать подходящее по сопротивлению обмоток реле РП4. Эти реле конструктивно одинаковы, но различаются регулировкой контактов. С реле РП4 нужно снять защитный алюминиевый кожух, вывинтить на один-два оборота фиксирующий винт левого контакта, вручную перебросить к этому контакту якорь, затем медленно вращать регулировочный винт левого контакта, пока якорь самостоятельно не перебросится к правому. В этом положении левый контакт следует зафиксировать, после чего надеть на реле кожух.

Реле K3 - РКС3 (исполнение РС4.501.200) с обмоткой сопротивлением 175 Ом и номинальным рабочим напряжением 24 В [5]. Его можно заменить другим реле с таким же рабочим напряжением обмотки, контакты которого способны коммутировать ток не менее 20 А.

Вольтметр PA1 - Ц4209 детекторной системы с пределом измерения 500 В переменного напряжения.

Автомат собран в металлическом корпусе размерами 230х160х80 мм, который необходимо заземлить. Реле K3 помещено в отдельный отсек корпуса в связи с тем, что его контакты, соединенные с электросетью, не защищены от случайного прикосновения. Стабилитроны VD9 и VD10 снабжены теплоотводами площадью 50 см2.

Потребляемая автоматом от сети мощность - около 7 Вт. При налаживании автомата сетевое напряжение на него подают через лабораторный регулируемый автотрансформатор и устанавливают подстроечными резисторами R9 и R11 соответственно нижний и верхний пороги срабатывания.

При желании к гнездам XS1 и XS2 можно подключить звуковое сигнальное устройство, которое подаст сигнал тревоги при превышении допустимого напряжения в сети. Возможная схема сигнализатора изображена на рис. 2. На его входе имеется диодный мост VD1-VD4, который избавляет от необходимости соблюдать полярность, присоединяя штекеры XP1 и ХР2 к гнездам автомата. На транзисторах VT1 и VT2 собран обычный мультивибратор, генерирующий импульсы частотой около 800 Гц. Транзистор VT3 - усилитель мощности сигнала, подаваемого на телефонный капсюль HA1. Транзистор VT3 и стабилитрон VD5 следует установить на теплоотводы площадью 50 см2.


Рис. 2

Литература

  1. ГОСТ 13109-97. Нормы качества электрической энергии в системах электроснабжения общего назначения. - URL: internet-law.ru/gosts/gost/3761/.
  2. Безюлев С. Автомат защиты холодильника. - Радио, 2005, № 7, с. 48, 49.
  3. Шульгин Г. Унифицированные трансформаторы. - Радио, 1982, № 1, с. 59, 60.
  4. Реле поляризованные РП4, РП4М, РП5, РП7. - URL: museumrza.ru/up/jeksponaty/files/Spr_RP_4_5_7.djvu.
  5. Реле электромагнитное РКС3, РКС3Т. - URL: radiant.su/files/images/IRZ/rks3.pdf.

Автор: С. Бабын

Смотрите другие статьи раздела Блоки питания.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Использование Apple Vision Pro во время операций 16.03.2024

Медицинская команда больницы Кромвеля в Лондоне впервые применила Apple Vision Pro в ходе двух операций на позвоночнике. Это событие подтверждает потенциал гарнитуры в качестве медицинского инструмента, изменяющего подход к хирургической практике. Хотя сами врачи не использовали Vision Pro, операционная медсестра работала с виртуальной реальностью, используя очки во время подготовки и выполнения процедур. Гарнитура позволила просматривать виртуальные экраны в операционной, выбирать инструменты и следить за ходом операции. Программное обеспечение, разработанное компанией eXeX, специализирующейся на создании приложений на основе искусственного интеллекта для хирургии, существенно улучшило процесс оказания медицинской помощи пациентам. Использование Apple Vision Pro открывает новые возможности для разработки приложений в сфере здравоохранения, таких как клиническое образование, планирование операций, обучение и медицинская визуализация. Внедрение Apple Vision Pro в медицинскую пр ...>>

Хранение углерода в Северное море 16.03.2024

Министр энергетики Норвегии Терье Осланд объявил о запуске проекта Longship, нацеленного на создание центрального хранилища углекислого газа в Северном море. Этот амбициозный проект оценивается в $2,6 млрд и направлен на применение технологии CCS (углеродного захвата и хранения) для смягчения воздействия климатических изменений. Норвегия уже имеет опыт в области CCS благодаря успешным проектам Sleipner и Snohvit, и сейчас стремится увеличить объем углерода, запечатываемого под морским дном. План Longship предусматривает создание мощности по захвату и хранению 1,5 млн. тонн углерода ежегодно в течение 25 лет. Несмотря на позитивные перспективы, существуют опасения по поводу долгосрочных последствий такого хранения. Однако сторонники проекта утверждают, что морское хранение углерода имеет ряд преимуществ, включая минимальное воздействие на окружающую среду. Проект Longship осуществляется при участии компаний Equinor, Shell и TotalEnergies через совместное предприятие Northern Li ...>>

Выращены мини-органы из амниотической жидкости человека 15.03.2024

Международная команда ученых под руководством профессора Фань Сюлиня из Университета Чжэцзян разработала уникальный способ выращивания мини-органов из клеток, обнаруженных в амниотической жидкости человека. Этот значительный прорыв в медицине может привести к улучшению диагностики и лечения врожденных заболеваний. Органоиды, представляющие собой трехмерные клеточные структуры, имитирующие органы в меньшем масштабе, были выращены из клеток легких, почек и тонкого кишечника, найденных в амниотической жидкости. Этот метод открывает новые возможности для изучения различных состояний плода и может стать ключом к ранней диагностике и лечению врожденных дефектов. Хотя пока не проводились попытки использования этого метода в лечении, ученые надеются, что их исследования в будущем помогут бороться с серьезными врожденными заболеваниями, которые затрагивают миллионы новорожденных ежегодно. Этот прорыв может изменить практику медицинских вмешательств, позволяя диагностировать и лечить врожд ...>>

Случайная новость из Архива

Космическое вино 07.08.2017

В течение последних нескольких лет мы наблюдали, как астронавты NASA на Международной космической станции не только выращивают продукты в космосе, но и пробуют собранный урожай. Успех данного мероприятия привел некоторых экспертов к вопросу - когда мы сможем ожидать первый урожай космического вина?

По словам ученого Джоя Масса, который работает над системой производства растений в NASA, выращивание винного винограда в космосе является интересным вызовом. В ближайшее время специалисты хотят попробовать вырастить в космосе карликовые фруктовые деревья, и не исключено, что в будущем вслед за ними будут опробованы и карликовые виноградные лозы.

Растения для космоса должны быть очень компактными, так как имеется проблема с получением достаточного количества света. Еще одной серьезной проблемой является опыление. Джоя Масса говорит, что в следующем году астронавты будут пытаться опылять карликовые помидоры вручную, и данный способ также может быть применен и по отношению к винограду.

Тем не менее, выращивание винограда является лишь частью процесса производства вина. Ферментация в космосе - еще один сложный вопрос, стоящий перед учеными. Джоя Масса считает, что превращение сахаров в спирт в космосе не является научной фантастикой, и для производства вина в космосе может быть разработан микробный биореактор, который позволил бы ферментации и другим процессам происходить в условиях микрогравитации.

Потенциал выращивания винограда в космосе заключается в том, что он не будет подвержен типичным для растения заболеваниям или воздействию бактерий.

Другие интересные новости:

▪ Универсальное лекарство от гриппа

▪ П-образные фотоэлектрические датчики серии BUP от Autonics

▪ Коврик для эффективной сердечно-легочной реанимации

▪ ИС Toshiba TC3567х с поддержкой стандарта Bluetooth Low Energy 4.1

▪ Умная подвеска Ford с защитой от выбоин

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Преобразователи напряжения, выпрямители, инверторы. Подборка статей

▪ статья Человек он был. Крылатое выражение

▪ статья Что такое GBAS? Подробный ответ

▪ статья Обслуживание котлов с электрообогревом. Типовая инструкция по охране труда

▪ статья Электроника в автодиагностике. Энциклопедия радиоэлектроники и электротехники

▪ статья Усилитель для модема. Энциклопедия радиоэлектроники и электротехники

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:





All languages of this page

Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2024