Menu Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Импульсный БП - из зарядного устройства. Энциклопедия радиоэлектроники и электротехники

Бесплатная техническая библиотека

Энциклопедия радиоэлектроники и электротехники / Блоки питания

Комментарии к статье Комментарии к статье

Имеющиеся в широкой продаже импульсные зарядные устройства для малогабаритной аппаратуры - неплохая основа для построения блоков питания, обладающих более широкими возможностями, чем исходные устройства. О том, как превратить такое зарядное устройство в блок питания, рассказывается в статье.

Для зарядки аккумуляторных батарей и питания компактной аппаратуры (мобильных телефонных аппаратов, MP-3 плейеров, электронных книг) в настоящее время широко используются различные импульсные зарядные устройства. К сожалению, их выходное напряжение (обычно около 5 В при токе нагрузки 0,2...2 А) плохо отфильтровано, имеет большой уровень пульсаций, а сами они являются источниками радиопомех, что не позволяет использовать их для питания радиоприемных, звукоусилительных и измерительных устройств. Однако все эти недостатки довольно легко устранимы, и после несложной доработки такие "зарядники" становятся способными питать и названные устройства.

В качестве примера ниже описана доработка зарядного устройства модели AC-15E (его схема представлена на рис. 1), обеспечивающего выходное стабилизированное напряжение 5,6 В при токе нагрузки до 0,8 А. Напряжение сети 220 В поступает на конденсатор фильтра выпрямленного напряжения C5 через защитный резистор R1 и диод D1 (позиционные обозначения элементов соответствуют имеющимся на монтажной плате устройства). Импульсный преобразователь напряжения выполнен на высоковольтном транзисторе Q1, трансформаторе T1 и элементах R5, C6. Резистор R2 предназначен для запуска преобразователя, элементы D6, R9, С2 образуют цепь демпфирования.

Импульсный БП - из зарядного устройства
Рис. 1

На транзисторе Q2 выполнены узлы защиты от перегрузки и стабилизации выходного напряжения. При увеличении эмиттерного тока транзистора Q1 растет падение напряжения на резисторе R3, и когда оно становится больше 0,6 В, открывается транзистор Q2, который шунтирует эмиттерный переход Q1, после чего ток коллектора этого транзистора снижается.

Узел стабилизации выходного напряжения работает следующим образом. Когда выходное напряжение по какой-либо причине увеличивается, растет ток через излучающий диод оптрона PC1, в результате чего его фототранзистор открывается. Вместе с ним открывается транзистор Q2, что приводит к уменьшению тока базы Q1 и понижению напряжения на выходе устройства. При отклонении выходного напряжения от заданного значения в сторону уменьшения процесс протекает в обратном направлении.

Конденсатор C7 фильтрует выпрямленное диодом Шоттки D7 напряжение обмотки III трансформатора Т1. Выходное напряжение устройства зависит от напряжения стабилизации стабилитрона D8 (превышает его примерно на 1,1...1,2 В).

Схема блока питания (БП), собранного на основе этого зарядного устройства, показана на рис. 2 (позиционные обозначения новых элементов начинаются с цифры 1). Его было решено изготовить на стабилизированное выходное напряжение 3,3 В, для чего стабилитрон D8 был заменен прибором с напряжением стабилизации 2,4 В. БП с таким выходным напряжением можно использовать для питания малогабаритных радиоприемников, компактных фотоаппаратов, детских игрушек и других устройств, рассчитанных на автономное питание напряжением 2,4...3,7 В. При желании, применив соответствующий стабилитрон, можно получить выходное напряжение в интервале 3,3...6 В.

Импульсный БП - из зарядного устройства
Рис. 2 (нажмите для увеличения)

Для уменьшения помех, создаваемых импульсным преобразователем, он подключен к сети 220 В через LC-фильтр, состоящий из элементов 1L1, 1L2, 1L3, 1C1, 1C2. Дроссель 1L3 установлен на место резистора R1, а вместо последнего установлен защитный резистор 1R1 большего сопротивления. Конденсатор фильтра C5 заменен конденсатором большей емкости и с более высоким номинальным напряжением.

Номинал токоограничивающего резистора R5 (680 Ом) уменьшен до 470 Ом, а резистора R3 (10 Ом) - до 5,1 Ом (чем меньше сопротивление этого резистора, тем больше ток нагрузки, при котором срабатывает защита). Значительно увеличена емкость конденсатора фильтра C7. Параллельно излучающему диоду оптрона подключен ранее отсутствовавший на плате резистор R10 (чем меньше его сопротивление, тем больше выходное напряжение БП). Напряжение на нагрузку поступает через LC-фильтр, состоящий из элементов 1L4, 1L5, 1L6, 1C5-1C9. Светодиод 1HL1 светит при наличии выходного напряжения.

Устройство рассчитано на длительную непрерывную работу при токе нагрузки до 0,5 А, но способно кратковременно питать и нагрузку, потребляющую ток 1 А. Режим работы в этом случае такой: 1 мин при токе нагрузки 1 А, затем перерыв 5 мин при токе нагрузки менее 0,5 А, далее снова 1 мин при токе 1 А и так далее. Амплитуда пульсаций и шумов при токе нагрузки 0,5 А - около 50 мВ, при 1 А - около 100 мВ (в этом случае выходное напряжение снижается до 3,1 В). Выходного тока 0,5 А при напряжении 3,3 В достаточно для питания портативного радиоприемника, содержащего относительно мощный УМЗЧ, а тока 1 А -для питания портативных фотоаппаратов и большинства детских игрушек.

Детали БП смонтированы в пластмассовом корпусе размерами около 95x80x26 мм от приемного устройства для беспроводных компьютерных клавиатуры и мыши (рис. 3). Некоторые дополнительные детали приклеены к корпусу термоклеем и полимерным клеем "Квинтол".


Рис. 3

Резистор 1R1 - невозгораемый Р1-7 или импортный разрывной, размещен внутри изолирующей силиконовой невозгораемой трубки. Конденсаторы 1С1, 1С2 - керамические высоковольтные, 1С3, 1С6, 1C7, 1C9 - керамические многослойные (первые три припаяны между выводами соответствующих оксидных конденсаторов, четвертый смонтирован в штекере питания XS1). Оксидные конденсаторы - импортные аналоги К50-68.

Дроссели 1L1 - 1L3 - миниатюрные промышленного изготовления с H-образными ферритовыми магнитопроводами и обмотками сопротивлением 3...22 Ом, 1L4-1L6 -самодельные, намотаны на кольцевых магнитопроводах диаметром 22 мм из низкочастотного феррита и содержат 20...30 витков многожильного монтажного провода. Чем больше индуктивность этих дросселей и меньше сопротивление их обмоток, тем лучше.

При переделке или ремонте неисправного зарядного устройства вместо транзистора MJE13001 можно применить (с учетом цоколевки) KF13001, MJE13002, MJE13003. Если возможно, желательно подобрать экземпляр с наибольшим статическим коэффициентом передачи тока базы и наименьшим обратным током коллектора. Вместо транзистора 2SC845 подойдет любой из серий 2SC1845, BC547, SS9014, КТ645, КТ3129, КТ3130. Оптрон PS817C можно заменить любым из SFH617A-2, LTV817, PC817, EL817, PS2501-1, PC814, PC120, PC123, а диод FR107 - любым из UF4007, FR157, MUR160, 1N5398, КД247Д, КД258Г. Этими же диодами можно заменить и 1N4007. Вместо диода 1N4148 подойдет любой из 1N914, 1SS244, КД521, КД522. Возможная замена диода Шоттки 1N5819 - MBRS140TR, SB140, SB150, а светодиода КИПД35Е-Ж - любой непрерывного свечения без встроенного резистора. Если БП будет настроен на большее выходное напряжение, то сопротивление токоограничивающего резистора 1R3 необходимо увеличить. Внешний вид БП показан на рис. 4.


Рис. 4

Для подключения к нагрузке применен двухпроводный шнур с медными жилами сечением 1 мм2. На него надеты два ферритовых трубчатых магнитопровода длиной 24 мм: один - поблизости от корпуса БП, другой - рядом со штекером питания XS1. Корпус устройства не экранирован, поэтому питаемые от него простейшие УКВ-радиоприемники (например, собранные на микросхемах К174ХА34, К174ХА34А, TDA7088T) в условиях неуверенного радиоприема чувствительны к помехам, если находятся от него на расстоянии менее 500 мм (примерно такой же или больший уровень ВЧ помех создают КЛЛ). При желании БП нетрудно и экранировать, оклеив корпус изнутри липкой алюминиевой фольгой, электрически соединенной с минусовой обкладкой конденсатора 1С8.

Аналогичным образом можно модернизировать и другие зарядные устройства, например, собранные по схемам [1, 2].

Литература

  1. Бутов А. Активный разветвитель сигнала для стереотелефонов. - Радио, 2014, № 1, с. 12-14.
  2. Бутов А. Доработка сетевого зарядного устройства. - Радио, 2013, № 3, с. 20, 21.

Автор: А. Бутов

Смотрите другие статьи раздела Блоки питания.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Впервые преоодолена передача ВИЧ от матери к ребенку 02.01.2026

Проблема вертикальной передачи ВИЧ - от матери к ребенку - остается одной из ключевых задач глобальной медицины. Недавний отчет Всемирной организации здравоохранения (ВОЗ) демонстрирует историческое достижение: Бразилия впервые в своей истории полностью преодолела этот путь передачи вируса. Страна стала 19-й в мире и первой с населением более 100 миллионов человек, которая достигла такого результата. Достижения Бразилии основаны на комплексных медицинских программах, обеспечивающих своевременный доступ к диагностике и терапии для всех слоев населения. ВОЗ официально подтвердило, что уровень передачи ВИЧ от матери к ребенку снизился до менее двух процентов. Более 95% беременных женщин в стране получают регулярный скрининг на ВИЧ и необходимое лечение в рамках стандартного ведения беременности. Изначально программа тестировалась в крупных муниципалитетах и штатах с населением более 100 тысяч человек, а затем была масштабирована на всю страну. Такой подход позволил унифицировать ста ...>>

Нанослой германия увеличивает эффективность солнечных батарей на треть 02.01.2026

Разработка высокоэффективных солнечных батарей остается одной из ключевых задач современной энергетики. Недавнее исследование южнокорейских ученых позволило повысить производительность тонкопленочных солнечных элементов почти на 30%, что открывает новые перспективы для возобновляемых источников энергии, гибкой электроники и сенсорных устройств. Команда исследователей сосредоточилась на элементах на основе моносульфида олова (SnS) - нетоксичного и доступного материала, который идеально подходит для гибких солнечных панелей. До настоящего времени эффективность SnS-устройств оставалась низкой из-за проблем на границе контакта с металлическим электродом. В этой области возникали структурные дефекты, диффузия элементов и электрические потери, что существенно ограничивало возможности таких батарей. "Этот интерфейс был главным барьером для достижения высокой производительности", - отмечает профессор Джейонг Хо из Национального университета Чоннам. Для решения этих проблем ученые предлож ...>>

Электростатическое решение для борьбы с льдом и инеем 01.01.2026

Борьба с льдом и инеем на транспортных средствах и критически важных поверхностях зимой остается сложной и затратной задачей. Ученые из Virginia Tech разработали инновационную технологию, способную разрушать лед и иней без использования тепла или химических реагентов, что открывает новые возможности для безопасной и экологичной зимней эксплуатации транспорта. Исследователи обнаружили, что лед и иней образуют кристаллическую решетку с так называемыми ионными дефектами - заряженными участками, способными перемещаться под воздействием электрического поля. Эти дефекты являются ключом к управлению прочностью льда и его удалением с поверхностей. Когда на замерзшую поверхность подается положительный электрический заряд, отрицательные ионные дефекты притягиваются к источнику поля. Это вызывает разрушение кристаллической решетки льда, в результате чего часть льда буквально "отскакивает" от поверхности. Такой эффект позволяет удалять лед без применения внешнего тепла или химических средств ...>>

Случайная новость из Архива

Унитаз с наномембраной 12.01.2016

Исследователи из университета Крэнфилда (Великобритания) разработали "Унитаз с наномембраной", которому не нужно воды. Он преобразует экскременты в электричество и очищенную воду.

Процесс начинается после закрытия крышки. Внизу горшка находится ротационный механизм, который направляет отходы в камеру осаждения, которая предотвращает утечку запахов. После этого вода фильтруется через специальную мембрану, в которой используются нанотехнологии и которая отделяет молекулы воды в паре от остальной массы. Это предотвращает дальнейший вынос патогенов и твердых веществ вместе с водой.

Затем пар попадает в камеру, заполненную тем, что изобретатели назвали "гидрофильными бусинами с нанопокрытием", которые способствуют конденсации пара и образованию воды в водосборнике, расположенном снизу. По словам исследователей, чистота воды позволяет использовать ее в домашнем хозяйстве для мытья и для поливки растений. Остатки твердых веществ выводятся с помощью архимедова винта во вторую камеру.

Предполагается, что после этого твердые вещества будут сжигаться для превращения их в пепел и электроэнергию. Полученная энергия будет использоваться для процесса фильтрации, а ее остаток можно будет использовать для зарядки мобильников или иных небольших устройств.

По окончании процесса в качестве отходов остается только зола, очищенная от патогенов, которую можно использовать в качестве удобрения в сельском хозяйстве. Унитаз в состоянии переработать продукты жизнедеятельности 10 человек.

Другие интересные новости:

▪ Лучший подарок - самому себе

▪ Пластырь, измеряющий уровень сахара в крови без проколов

▪ Компактный городской электромобиль Microlino Lite

▪ Выращивание зубов прямо во рту

▪ Внутренние очки

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Биографии великих ученых. Подборка статей

▪ статья Закон Хаббла. История и суть научного открытия

▪ статья Какой баскетболист, сам того не желая, предсказал год своей смерти? Подробный ответ

▪ статья Начальник планово-экономического отдела. Должностная инструкция

▪ статья Усилитель на 4-х транзисторах с плавающим питанием. Энциклопедия радиоэлектроники и электротехники

▪ статья Открыть пустую банку. Секрет фокуса

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:





Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2026