Menu Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Блок питания низковольтного паяльника мощностью 18 Вт. Энциклопедия радиоэлектроники и электротехники

Бесплатная техническая библиотека

Энциклопедия радиоэлектроники и электротехники / Блоки питания

Комментарии к статье Комментарии к статье

В предлагаемой вниманию читателей статье описан импульсный блок с номинальным выходным напряжением 6 В для питания нагрузки мощностью до 18 Вт. Имеется возможность оперативного переключения на выходное напряжение 5 В. В авторском варианте блок используется для питания низковольтного паяльника, однако его можно применять для любой нагрузки соответствующей мощности, рассчитанной на напряжение 5 или 6 В.

В настоящее время микроэлектроника настолько широко распространилась в бытовой и промышленной технике, что паяльники на напряжение 220 В уже мало пригодны не только для ее ремонта, но и для радиолюбительского творчества. Приходится пользоваться "мини-паяльниками" небольшой мощности с низким напряжением питания. Как правило, для работы с ними применяют классические трансформаторные блоки питания, имеющие солидные размеры и массу. Но современное направление на использование для питания в бытовой (и не только) аппаратуре обратноходовых импульсных источников питания (ИИП) и появление для этого широкого набора микросхем позволяют собрать легкий малогабаритный блок.

Предлагаемый вариант источника питания рассчитан для работы с паяльниками с номинальным напряжением 6 В мощностью до 18 Вт. В устройстве предусмотрено ступенчатое уменьшение напряжения питания паяльника до 5 В, что соответствует снижению мощности паяльника до 70 %. Малая проходная емкость ИИП позволяет использовать его для работы с элементами, которые подвержены воздействию статического электричества.

Основные технические характеристики

  • Интервал входного напряжения, В .......180...250
  • Номинальная частота преобразования, кГц .......100
  • Номинальное выходное напряжение, В ....... 6
  • Ток нагрузки, А .......0...3

На рис. 1 представлена схема преобразователя питания для паяльника. Основной элемент устройства - специализированная микросхема TOP223Y. О проектировании подобных ИИП подробно рассказано в статье [1].

Блок питания низковольтного паяльника мощностью 18 Вт
Рис. 1 (нажмите для увеличения)

Устройство собрано на печатной плате из фольгированного с одной стороны стеклотекстолита толщиной 1,5...2 мм. Ее чертеж показан на рис. 2. Для уменьшения габаритов в устройстве применены импортные оксидные конденсаторы. Конденсаторы С1, С5 - керамические или пленочные на номинальное постоянное напряжение не менее 400 В или переменное не менее 250 В, остальные - керамические на напряжение не менее 50 В. Резисторы R1, R2, R4, R8, диоды VD3, VD4 установлены перпендикулярно плате. Для повышения надежности печатные проводники выходных цепей (от обмотки III трансформатора Т1 до выхода - на чертеже печатной платы они немного шире остальных) рекомендую "усилить" увеличенным при лужении слоем припоя.

Блок питания низковольтного паяльника мощностью 18 Вт
Рис. 2

Элементы R4 и C8 были зарезервированы согласно рекомендациям фирмы-производителя для случая неустойчивого запуска преобразователя, но необходимости в них не возникло. В выходном выпрямителе применен сдвоенный диод Шотки в корпусе ТО-220. Дроссель выходного фильтра L2 намотан на ферритовом магнитопроводе "гантелевидной" формы размерами 9x12 мм от неисправного блока питания персонального компьютера проводом ПЭВ-2 0,5 мм до заполнения. С рекомендациями по возможной замене примененных деталей также можно ознакомиться в статье [1].

Микросхема преобразователя DA1 и диод VD5 установлены на теплоотводы, изготовленные из листовой меди толщиной 1 мм. Благодаря гибкости материала удалось относительно легко изготовить теплоотводы с максимальной поверхностью охлаждения. О формах и размерах теплоотводов можно судить по внешнему виду платы устройства, показанной на рис. 3. Готовый вид изделия представлен на рис. 4.

Блок питания низковольтного паяльника мощностью 18 Вт
Рис. 3

Блок питания низковольтного паяльника мощностью 18 Вт
Рис. 4

Выключатель питания расположен на верхней крышке, светодиоды установлены на отдельной небольшой плате и приклеены к крышке. Светодиод HL2 - зеленого цвета свечения, HL1 - красного. Светодиод HL2 сигнализирует о наличии выходного напряжения, а HL1 включается переключателем SA2 при установке последнего в режим пониженного выходного напряжения.

В устройстве применены готовые изделия: дроссель L1 - сетевой фильтр PMCU-0330 0,4 А 300 В или самодельный, как предложено в статье [1]. Переключатель SA2 - B1550 (SS8) движковый 50 В импортный на два положения горизонтального исполнения. Разъем питания (на схеме не показан) - вилка RF-180S на блок угловая двухконтактная 250 В/2,5 A, выходной разъем (на схеме не показан) - DS-210. Выключатель питания SA1 - SC719 (SMRS-101), 250 В/1 A или аналогичный. Микросхему TOP223Y можно заменить по возрастающей мощности на ТОР224-6Убез изменений в схеме, разница только в удорожании конструкции.

Трансформатор преобразователя собран на Ш-образном магнитопроводе Ш6х6 размерами 24x24x6 мм с каркасом в низкопрофильном исполнении из феррита, предположительно, проницаемостью 1500...2000. Комплект из каркаса и магнитопровода был приобретен в магазине, где, кроме цены, ничего выяснить не удалось.

Линейка микросхем TOP22Х имеет внутреннюю защиту от перегрузки по току за счет встроенного токоограничительного резистора, поэтому параметры изготовленного трансформатора (в первую очередь, индуктивность первичной обмотки) имеют первостепенное значение.

Намотка трансформатора "вслепую" желаемых результатов не дала. Пришлось обзавестись приборами для измерения индуктивности, после чего проблема с определением числа витков первичной обмотки отпала.

Пользуясь рекомендациями в статье [1] для TOP223Y и указанного магнитопровода, я определился со значением индуктивности - 1300 мкГн. Как известно, индуктивность катушки с магнитопроводом (в микрогенри) рассчитывается по формуле

L = (N/K)2,

где N - число витков; K - параметр магнитопровода.

Далее экспериментальным путем определяем параметры подходящего магнитопровода. Для вычисления К наматываем на каркас пробную обмотку, например 50 витков, и собираем трансформатор обязательно с прокладками в крайних кернах толщиной 0,2 мм из немагнитного материала, например текстолита. Иногда магнитопроводы уже имеют готовый зазор, тогда дополнительный зазор не нужен.

После сборки трансформатора измеряем индуктивность обмотки и определяем коэффициент К имеющегося магнитопровода. Затем по формуле N = K√L вычисляем необходимое число витков первичной обмотки.

В моем варианте первичная обмотка содержит 92 витка провода ПЭВ-2 диаметром 0,3 мм. Обмотка II - 13 витков того же провода. Выходная обмотка содержит семь витков провода ПЭВ-2 диаметром 0,5 мм, намотанных в три жилы. Соблюдение фазировки обмоток обязательно. Начало обмотки на схеме обозначено точкой.

Все обмотки изолированы между собой двойным слоем полиэфирной изоляционной ленты ТЕА 5К5, которую можно заменить лакотканью или другим материалом общей толщиной 0,1 мм. После окончательной сборки обязательно следует измерить индуктивность первичной обмотки.

Блок питания собран в корпусе BOX-KA12 размерами 90x65x35 мм. Для охлаждения в корпусе просверлены отверстия.

При исправных деталях и отсутствии ошибок в монтаже налаживание ИИП не требуется. При первом включении необходимо обязательно вместо плавкой вставки FU1 использовать лампу накаливания мощностью 40-60 Вт. Это избавит от возможных неприятностей. Из собственного опыта выяснилось, что несоблюдение фазировки первичной обмотки и обмотки II гарантированно выводит из строя микросхему TOP223Y При несоблюдении фазировки выходной обмотки устройство "не держит" нагрузку, срабатывает внутренняя защита по току в микросхеме TOP223Y

В случае необходимости для замены и подбора магнитопровода можно обратиться к статье [5].

При самостоятельной разводке платы необходимо обязательно учитывать рекомендации фирмы-производителя. Топология печатной платы современных ИИП на высоких частотах преобразования имеет свои особенности. С ними, а также с параметрами микросхем серии TOP22Х можно ознакомиться в [6].

Литература

  1. Косенко С. Проектирование обратноходовых ИИП на TOPSwitch-II с помощью программы VDS. - Радио, 2006, № 3, с. 30-32.
  2. Терентьев Е. Измеритель емкости и индуктивности. - Радио, 1995, № 4, с. 37.
  3. Потачин И. Приставка-измеритель LC к цифровому вольтметру. - Радио, 1998, № 12, с. 31.
  4. Беленецкий С. Приставка для измерения индуктивности в практике радиолюбителя. - Радио, 2005, № 5, с. 26-28.
  5. Косенко С. Подбор отечественных аналогов импортных трансформаторов в обратноходовом преобразователе. - Радио, 2006, № 5, с. 31.
  6. TOP221 -TOP227. TOPSwitch-II. Three-terminal Off-line PWM Switch. - URL: powerint.com/sites/default/files/product-docs/top221-227.pdf.

Автор: С. Чернов

Смотрите другие статьи раздела Блоки питания.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Лабораторная модель прогнозирования землетрясений 30.11.2025

Предсказание землетрясений остается одной из самых сложных задач геофизики. Несмотря на развитие сейсмологии, ученые все еще не могут точно определить момент начала разрушительного движения разломов. Недавние эксперименты американских исследователей открывают новые горизонты: впервые удалось наблюдать микроскопические изменения в контактной зоне разломов, которые предшествуют землетрясению. Группа под руководством Сильвена Барбота обнаружила, что "реальная площадь контакта" - участки, где поверхности разлома действительно соприкасаются - изменяется за миллисекунды до высвобождения накопленной энергии. "Мы открыли окно в сердце механики землетрясений", - отмечает Барбот. Эти изменения позволяют фиксировать этапы зарождения сейсмического события еще до появления традиционных сейсмических волн. Для наблюдений ученые использовали прозрачные акриловые материалы, через которые можно было отслеживать световые изменения в зоне контакта. В ходе искусственного моделирования примерно 30% ко ...>>

Музыка как естественный анальгетик 30.11.2025

Ученые все активнее исследуют немедикаментозные способы облегчения боли. Одним из перспективных направлений становится использование музыки, которая способна воздействовать на эмоциональное состояние и когнитивное восприятие боли. Новое исследование международной группы специалистов демонстрирует, что даже кратковременное прослушивание любимых композиций может значительно снижать болевые ощущения у пациентов с острой болью в спине. В эксперименте участвовали пациенты, обратившиеся за помощью в отделение неотложной помощи с выраженной болью в спине. Им предлагалось на протяжении десяти минут слушать свои любимые музыкальные треки. Уже после этой короткой сессии врачи фиксировали заметное уменьшение интенсивности боли как в состоянии покоя, так и при движениях. Авторы исследования подчеркивают, что музыка не устраняет саму причину боли. Тем не менее, она воздействует на эмоциональный фон пациента, снижает уровень тревожности и отвлекает внимание, что в сумме приводит к субъективном ...>>

Алкоголь может привести к слобоумию 29.11.2025

Проблема влияния алкоголя на стареющий мозг давно вызывает интерес как у врачей, так и у исследователей когнитивного старения. В последние годы стало очевидно, что границы "безопасного" употребления спиртного размываются, и новое крупное исследование, проведенное международной группой ученых, вновь указывает на это. Работы Оксфордского университета, выполненные совместно с исследователями из Йельского и Кембриджского университетов, показывают: даже небольшие дозы алкоголя способны ускорять когнитивный спад. Команда проанализировала данные более чем 500 тысяч участников из британского биобанка и американской Программы миллионов ветеранов. Дополнительно был выполнен метаанализ сорока пяти исследований, в общей сложности включавших сведения о 2,4 миллиона человек. Такой масштаб позволил оценить не только прямую связь между употреблением спиртного и развитием деменции, но и влияние генетической предрасположенности. Один из наиболее тревожных результатов касается людей с повышенным ге ...>>

Случайная новость из Архива

Управление молниями с помощью лазерного луча 23.01.2023

Молния является одним из самых энергичных природных явлений, в процессе которого за долю секунды высвобождаются миллионы вольт, что может быть разрушительным - отключение электричества, пожары, травмы и даже смерти.

Долгое время лучшим способом защититься от молнии считался громоотвод - огромная металлическая палка, прикрепленная к самому высокому зданию. Эта простая конструкция, по сути, притягивает электричество и безопасно направляет его в землю. Однако одной из проблем является то, что подобные громоотводы имеют ограниченный радиус действия - например, 10-метровый громоотвод способен защитить лишь территорию радиусом в 10 метров вокруг себя. То есть для защиты крупного здания или аэропорта фактически потребуется гигантский громоотвод. Но, похоже, ученые нашли выход.

Физик Орельен Хуар из лаборатории прикладной оптики Французского национального центра научных исследований в Париже и его коллеги выдерживали многочасовую грозовую активность, чтобы проверить, может ли лазер отводить удары молнии от критической инфраструктуры.

Исследователи продемонстрировали работу новой более эффективной системы - по сути, ученые научились отклонять разряды молнии с помощью мощного лазера, направленного в небо.

По словам автора исследования Жан-Пьера Вольфа, лазерный громоотвод представляет собой луч лазера, направленный в облака во время шторма - таким образом он прокладывает путь наименьшего сопротивления для прохождения электричества. Более того, лазерный луч может простираться намного дальше, чем громоотвод, а значит и защищать большую территорию.

Ученые объясняют, что когда в атмосферу излучаются лазерные импульсы высокой мощности, внутри луча образуются нити очень интенсивного света. Они пронизывают молекулы азота и кислорода, которые присутствуют в воздухе, которые, в свою очередь, высвобождают свободные электроны для движения. В итоге ионизированный воздух, который также называют "плазмой", становится электрическим проводником.

Для демонстрации своей концепции ученые разработали лазерную систему со средней мощностью 1 кВт и пульсирующую приблизительно тысячу раз в секунду, высвобождая 1 джоуль энергии за импульс.

Лазерную систему установили на вершине Зентиса, который является самой высокой горой в Швейцарских Альпах. Ученые отмечают, что лазер был установлен рядом с башней, которая ежегодно привлекает порядка сотни ударов молнии.

Исследователи отмечают, что лазер был направлен в небо рядом с вершиной башни - основной целью было попытаться привлечь молнию к лучу до того, как она достигнет обычного громоотвода башни. За период тестирования ученые зафиксировали четыре удара молнии.

Другие интересные новости:

▪ Волны-убийцы Бермудского треугольника

▪ Умные очки Recon Jet HUD Pilot Edition

▪ Вне Солнечной системы обнаружен гелий

▪ Система определения сонливости водителей от Fujitsu

▪ Цена поваренной соли

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Искусство аудио. Подборка статей

▪ статья Пикейные жилеты. Крылатое выражение

▪ статья В каких языках нет различий между синим и зеленым цветами? Подробный ответ

▪ статья Педали вместо весел. Личный транспорт

▪ статья PSPICE-модели для программ моделирования. Энциклопедия радиоэлектроники и электротехники

▪ статья Предмет проходит сквозь стол. Секрет фокуса

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:





Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2025