Menu Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Бесконтактное зарядное устройство. Энциклопедия радиоэлектроники и электротехники

Бесплатная техническая библиотека

Энциклопедия радиоэлектроники и электротехники / Зарядные устройства, аккумуляторы, гальванические элементы

Комментарии к статье Комментарии к статье

Сегодня появился новый способ зарядки мобильных устройств - бесконтактный. Его суть заключается в том, что заряжаемое устройство не имеет непосредственного электрического контакта с зарядным устройством. Такой способ применяют для зарядки мобильных телефонов, смартфонов и пр. Автор предлагает свой вариант бесконтактного зарядного устройства для зарядки аккумуляторов светодиодного фонаря.

При частом пользовании каким-либо устройством со сменными элементами питания, например, карманным фонарем, возникает потребность в частой замене гальванических элементов питания или периодической зарядке, если применены аккумуляторы. Для зарядки аккумуляторов приходится вынимать их из корпуса фонаря, что не всегда удобно. В тоже время сейчас все большее распространение получает технология так называемой бесконтактной зарядки. Принцип работы большинства таких зарядных устройств (ЗУ) основан на индуктивной связи между источником и потребителем энергии. По такому же принципу работает и предлагаемое вниманию читателей ЗУ для карманного фонаря.

Основа предлагаемого ЗУ - электронный балласт от компактной люминесцентной лампы (КЛЛ). Как известно, электронный балласт КЛЛ представляет собой импульсный генератор, работающий на частоте несколько десятков килогерц. Благодаря такой частоте все элементы устройства имеют небольшие размеры, в том числе трансформаторы и балластные дроссели. Именно балластный дроссель является элементом, который ограничивает ток через люминесцентную лампу. И в этом смысле он выполняет ту же функцию, что и балластный конденсатор в простейших зарядных устройствах - ограничивает (задает) ток зарядки.

Структурная схема ЗУ показана на рис. 1. От КЛЛ использован собственно электронный балласт, который содержит выпрямитель со сглаживающим конденсатором, импульсный генератор и балластный дроссель, последовательно с которым включена не люминесцентная лампа, а разделительный трансформатор. Этот трансформатор служит связующим элементом между зарядным устройством и аккумуляторной батареей фонаря. Поскольку он включен последовательно с балластным дросселем, ток через него будет ограничен, и он частично работает как трансформатор тока, поэтому замыкание в цепи его вторичной обмотки не приведет к катастрофическим последствиям. Первичная обмотка трансформатора размещена в корпусе ЗУ, вторичная - в фонаре. Через первичную обмотку трансформатора протекает ток, который зависит в основном от индуктивности балластного дросселя и напряжения сети, поэтому остается относительно стабильным.

Бесконтактное зарядное устройство
Рис. 1. Структурная схема зарядного устройства (нажмите для увеличения)

В фонаре на вторичной обмотке трансформатора возникает переменное напряжение, которое выпрямляется и через ограничитель напряжения поступает на аккумуляторную батарею фонаря. Поскольку ток в первичной обмотке трансформатора ограничен, то он будет ограничен и во вторичной. Изменяя параметры трансформатора тока, можно задать требуемые напряжение и ток зарядки батареи. Когда напряжение батареи достигнет максимального значения, включится ограничитель. Напряжение на батарее перестанет расти, а "лишний" ток потечет через ограничитель.

Схема электронного балласта КЛЛ и его доработка показаны на рис. 2. Все вновь вводимые элементы и соединения выделены цветом. Была использована КЛЛ мощностью 18...20 Вт. После вскрытия ее корпуса с платы снимают проволочные выводы (4 шт.) люминесцентной лампы, которые обычно намотаны на металлические штыри. Затем отсоединяют провода, соединяющие плату с цоколем лампы. Плату размещают в пластмассовом корпусе подходящего размера с крышкой. Корпус должен быть достаточно просторный, чтобы, кроме платы, поместить дополнительные элементы. В авторском варианте была применена цилиндрическая коробка диаметром 65 и высотой 28 мм от канцелярских скрепок (рис. 3). Последовательно со штатным балластным дросселем L2 взамен люминесцентной лампы включают еще один балластный дроссель L3 от аналогичной КЛЛ и первичную обмотку T2.1 разделительного трансформатора. Для индикации работы импульсного генератора к его выходу через токоограничивающие резисторы R10 и R11 подключена неоновая индикаторная лампа HL1. Весь монтаж проводят навесным методом, для индикаторной лампы в корпусе сделано отверстие соответствующего диаметра.

Бесконтактное зарядное устройство
Рис. 2. Схема электронного балласта компактной люминесцентной лампы и его доработка (нажмите для увеличения)

Бесконтактное зарядное устройство
Рис. 3. Пластмассовый корпус для электронной платы

Для доработки был выбран светодиодный фонарь с диаметром корпуса 24 и длиной 82 мм. В нем применены девять светодиодов и батарея из трех аккумуляторов типоразмера ААА. Кнопочный выключатель питания расположен в отвинчивающейся крышке батарейного отсека. С корпусом фонаря соединены катоды светодиодов.

Схема доработки фонаря показана на рис. 4, все новые элементы и связи показаны красным цветом.

Бесконтактное зарядное устройство
Рис. 4. Схема доработки фонаря (нажмите для увеличения)

Переменное напряжение с обмотки T2.2 разделительного трансформатора выпрямляет диодный мост VD1, пульсации выпрямленного напряжения сглаживает конденсатор С1. Через диоды VD2 и VD3 ток зарядки поступает в аккумуляторную батарею. Диод VD2 предотвращает разрядку батареи в дежурном режиме, а диод VD3, подключенный параллельно-встречно светодиодам, пропускает зарядный ток. На микросхеме DA1 (параллельный стабилизатор напряжения) собран ограничитель напряжения, светодиоды HL1, HL2 индицируют режимы зарядки батареи.

В начале зарядки, когда напряжение аккумуляторной батареи меньше номинального, напряжение на управляющем входе (вывод 1) микросхемы DA1 меньше порогового. Поэтому ток через микросхему мал, и практически все выпрямленное напряжение поступает на цепь из токоограничивающего резистора R5 и светодиода HL2 (зеленого цвета свечения), который и сигнализирует о том, что происходит зарядка аккумуляторной батареи.

Когда напряжение батареи достигнет порогового значения, ток через микросхему возрастет и падение напряжения на ней уменьшится примерно до 2 В. Зарядный ток станет протекать через резистор R3 и микросхему DA1, поэтому зарядка аккумуляторной батареи постепенно прекратится. При этом светодиод HL2 погаснет, а HL1 (красного цвета свечения) начнет светить, сигнализируя об окончании зарядки.

Конструкцию устройства поясняет рис. 5. В крышке 3 батарейного отсека размещен кнопочный выключатель 5 (SA1 на рис. 4). Один вывод 4 выключателя 5 механически соединен с металлическим корпусом крышки 3, второй - с пружинным контактом 6. Выключатель механически зафиксирован в крышке с помощью изоляционной пластмассовой прокладки 7. С другой стороны для защиты от внешних климатических воздействий на выключатель надета резиновая прокладка 8.

Бесконтактное зарядное устройство
Рис. 5. Конструкция устройства

Доработка сводится к следующему. К крышке 3 приклеен пластмассовый кожух 1. В центре кожуха сделано отверстие, в котором с помощью клея закреплен каркас 10. На него намотана вторичная обмотка 2 (T2.2) разделительного трансформатора. Функцию толкателя выключателя выполняет цилиндрический магнитопровод 11. Чтобы он не выпадал из каркаса 10, к нему приклеена пластмассовая шайба 9. В отверстие в центре верхней крышки 12 корпуса электронного балласта вклеен пластмассовый каркас 14, на который намотана обмотка 13 (Т2.1) трансформатора.

Внутренний диаметр каркаса для намотки катушек трансформатора выбирают таким, чтобы в него с небольшим люфтом входил магнитопровод 11. В авторском варианте применен магнитопровод диаметром 6 и длиной 15 мм от дросселя компьютерного блока питания. Высота каркаса 14 - 8...9 мм, каркаса 10 - 6...7 мм, их толщина - 0,5...0,7 мм. Обмотка Т2.1 содержит 350 витков провода ПЭВ-2 0,18, обмотка T2.2 - 180 витков провода ПЭВ-2 0,1. Диаметр шайбы 9 - 10...12 мм, толщина - 0,5...1,5 мм, последнюю подбирают так, чтобы магнитопровод 11 "не болтался". Диаметр кожуха (пластмассовый контейнер от лекарства) - 21 мм, его высота - 11 мм. Доработанный фонарь показан на рис. 6.

Бесконтактное зарядное устройство
Рис. 6. Доработанный фонарь

При пользовании фонарем магнитопровод выполняет функцию толкателя выключателя. Но если фонарь выключить, электронный балласт включить в сеть и вставить магнитопровод в каркас 14 (см. рис. 5), между обмотками Т2.1 и Т2.2 возникнет индуктивная связь, на обмотке Т2.2 появится напряжение и начнется зарядка аккумуляторной батареи (рис. 7).

Бесконтактное зарядное устройство
Рис. 7. Зарядка аккумуляторной батареи фонаря

В устройстве применены малогабаритные постоянные выводные резисторы Р1-4 или импортные, светодиоды - любые с диаметром корпуса 3 мм красного и зеленого цветов свечения. Конденсатор С1 - К10-17в, он установлен на выводах диодного моста VD1.

Налаживание начинают с подборки числа витков обмотки T2.2. Для этого наматывают указанное число витков этой обмотки и подключают к ней диодный мост с конденсатором фильтра. Вставляют магнитопровод в каркас обмотки T2.1 и надевают на него обмотку T2.2. К выходу диодного моста (см. рис. 4) подключают переменный резистор сопротивлением 470 Ом. Изменяя его сопротивление, контролируют ток через него и напряжение на нем. Необходимо, чтобы при требуемом зарядном токе напряжение было 4,8...5 В (напряжение заряженной аккумуляторной батареи - 4,3...4,4 В плюс падение напряжения на диодах VD2 и VD3). При большем напряжении увеличится ток зарядки.

Поскольку в фонаре планировалось применить три аккумулятора емкостью 300...600 мА·ч, был выбран ток зарядки около 40 мА. По результатам измерении принимают решение о необходимости добавить или удалить витки обмотки Т2.2. После подборки числа витков обмотку надо защитить, покрыв слоем лака или клея. Следует отметить, что их число может заметно отличаться от указанного выше, поскольку это зависит от размеров и свойств магнитопровода. Для увеличения тока зарядки необходимо либо увеличить число витков первичной обмотки трансформатора тока, либо увеличить ток через нее, уменьшив индуктивность дросселей L2 и L3 в электронном балласте.

Затем на макетной плате монтируют все остальные элементы устройства, в батарейный отсек устанавливают свежезаряженные аккумуляторы, выводы 1 и 2 микросхемы DA1 временно замыкают. Вставляют магнитопровод в каркас обмотки T2.1, надевают на него обмотку T2.2 и измеряют напряжение (ивыпр) на выходе выпрямителя (см. рис. 4). Затем взамен батареи подключают переменный резистор сопротивлением 470 Ом и, изменяя его сопротивление, устанавливают на выходе выпрямителя такое же напряжение (ивыпр). Резистор R1 (см. рис. 4) подбирают так, чтобы при увеличении этого напряжения (его изменяют переменным резистором) на несколько десятков милливольт светодиод HL2 выключался, а HL1 - включался. В случае необходимости подбирают резистор R3. Его сопротивление должно быть таким, чтобы при отключении переменного резистора напряжение на выходе выпрямителя не превысило ивыпр и светился светодиод HL1. Следует учесть, что максимально допустимый ток микросхемы TL431CLP - 100 мА, поэтому ток зарядки не должен превышать 60...70 мА.

Доработку фонаря начинают с установки диода VD3. Для этого надо вынуть батарейный отсек, аккуратно удалить защитное стекло и изнутри выдавить плату со светодиодами. На плату между выводами светодиодов устанавливают диод VD3. После проверки правильности монтажа сборку проводят в обратном порядке и проверяют работоспособность фонаря. Все остальные элементы будут размещены в кожухе на крышке батарейного отсека.

В резиновой прокладке 8 (см. рис. 5) прокалывают два отверстия, в которые вставляют провода в надежной изоляции, например МГТФ, и припаивают их к выводам выключателя. При этом, возможно, потребуется извлечь выключатель из крышки 3 (см. рис. 5). Затем размещают элементы и закрепляют их термоклеем в кожухе 1 и соединяют проводами. Для установки светодиодов в кожухе делают два отверстия диаметром 3 мм.

Предложенное зарядное устройство можно применить для зарядки встроенных в самые различные устройства аккумуляторов или аккумуляторных батарей. В зависимости от конструкции такого устройства магнитопровод можно установить в каркасе обмотки Т2.1, а на него надевать катушку Т2.2, а также более кардинально изменить конструкцию трансформатора.

Автор: И. Нечаев

Смотрите другие статьи раздела Зарядные устройства, аккумуляторы, гальванические элементы.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Токсичность интернета преувеличена 07.01.2026

Социальные сети нередко воспринимаются как арена постоянной агрессии, оскорблений и распространения фейковой информации. Новое исследование Стэнфордского университета показывает, что реальность значительно отличается от популярного представления: интернет гораздо менее токсичен, чем многие пользователи считают. Ученые опросили более тысячи американцев, попросив их оценить долю пользователей соцсетей, которые ведут себя агрессивно или распространяют ненависть. Оказалось, что впечатления людей сильно преувеличивают масштабы проблемы. Например, респонденты считали, что почти половина пользователей Reddit хотя бы раз оставляла оскорбительные комментарии, тогда как фактические данные платформы показывают, что таких людей не более 3%. Аналогичная ситуация наблюдается с дезинформацией. Опрос показал, что большинство участников считали почти половину аудитории Facebook распространителями фейковых новостей, однако статистика говорит об обратном: фактическая доля таких пользователей состав ...>>

Процессоры Ryzen AI 400 07.01.2026

Современные вычисления все больше ориентируются на интеграцию искусственного интеллекта и высокую производительность в компактных устройствах, таких как ноутбуки и мини-ПК. Новая линейка процессоров AMD Ryzen AI 400 демонстрирует, как разработчики объединяют мощные центральные ядра, графику и нейросетевые ускорители в одном чипе, чтобы удовлетворять растущие потребности пользователей в играх, контенте и ИИ-приложениях. AMD представила процессоры серии Gorgon Point, которые включают до 12 ядер Zen 5 и до 24 потоков вычислений. Чипы поддерживают интегрированную графику RDNA 3.5, обеспечивают максимальную тактовую частоту до 5,2 ГГц и имеют энергопотребление от 15 Вт до 54 Вт. Особое внимание уделено NPU, способному обрабатывать до 60 триллионов операций в секунду (TOPS), что делает эти процессоры эффективными для задач с искусственным интеллектом. Конструкция Ryzen AI 400 сочетает ядра Zen 5 и Zen 5c, обеспечивая высокую гибкость и производительность. Несмотря на то, что архитектур ...>>

Женщины лучше распознают признаки болезни по лицу 06.01.2026

Способность распознавать, что кто-то нездоров, часто проявляется интуитивно: бледная кожа, опущенные веки, уставшее выражение лица могут сигнализировать о недомогании. Новое исследование международной группы ученых показало, что женщины в среднем точнее мужчин улавливают такие тонкие невербальные признаки болезни, что может иметь эволюционные и социальные объяснения. В отличие от предыдущих работ, где использовались отредактированные фотографии или имитация больных лиц, ученые решили проверить, насколько люди способны распознавать естественные признаки недомогания. Такой подход позволил оценить реальную чувствительность к изменениям в лицах, возникающим при болезни. В исследовании приняли участие 280 студентов, поровну мужчин и женщин. Участникам предложили оценить 24 фотографии, на которых изображены люди как в здоровом состоянии, так и во время болезни. Это дало возможность сравнить восприятие естественных признаков недомогания в реальных лицах. Для анализа состояния каждого ...>>

Случайная новость из Архива

Сыр из дрожжей 21.09.2024

Немецкий стартап Formo представил революционный продукт - растительный аналог сливочного сыра, изготовленный с помощью белка, полученного из микроорганизма коджи (Aspergillus oryzae). Этот продукт уже появился на полках более 2000 супермаркетов Германии и Австрии, включая сети Rewe, Billa и Metro. Это достижение стало возможным благодаря успешному привлечению $60 млн в ходе раунда финансирования серии B.

Formo, компания, специализирующаяся на микробной ферментации, использует современные биотехнологии для создания качественных заменителей молочных продуктов. Новый сыр, первый коммерческий продукт стартапа, доступен в двух вариантах: классический и с добавлением трав, а вскоре ожидается выпуск варианта с томатами. Более того, в планах компании - разработка альтернативы сыру Камамбер, что открывает новые горизонты в сфере растительных продуктов.

Основой альтернативного сыра является белок коджи, который получают через ферментацию микроорганизма Aspergillus oryzae. Этот микроорганизм давно используется в традиционной японской кухне для производства таких продуктов, как мисо, соевый соус и саке. Белок коджи по своим свойствам напоминает сывороточный белок, что делает его идеальным для замены молочного белка при производстве сыра.

Процесс создания сыра начинается с ферментации коджи в специализированных резервуарах, после чего из полученного белка формируется порошок. Этот порошок используется для создания сыра по технологии, схожей с традиционной, что позволяет сохранить характерную текстуру и вкус молочных продуктов.

Главное преимущество сыра из коджи - его экологичность. Согласно данным Formo, производство этого сыра требует на 96% меньше воды, на 83% меньше земельных ресурсов и выбрасывает на 65% меньше парниковых газов по сравнению с традиционным производством сыра из коровьего молока. Таким образом, продукт не только вкусен и полезен, но и значительно уменьшает нагрузку на окружающую среду.

Formo своим успехом демонстрирует, что инновационные технологии могут предоставить потребителям вкусные и полезные альтернативы, не наносящие ущерба экологии. С расширением ассортимента и охватом новых рынков, стартап делает важный шаг в будущее пищевой индустрии, предлагая устойчивые решения для производства продуктов питания.

Другие интересные новости:

▪ Протоны тяжелее нейтронной звезды

▪ Облачная платформа Oracle Data Cloud

▪ Материнская плата MSI 990FXA Gaming

▪ Квантовый микроскоп видит мельчайшие изменения в атомах

▪ Звонок через стратосферу

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Компьютерные устройства. Подборка статей

▪ статья Безгрешные доходы. Крылатое выражение

▪ статья Какой художник под впечатлением от работы другого полностью переделал свою фреску? Подробный ответ

▪ статья Функциональный состав телевизоров Tamashi. Справочник

▪ статья Самодельный электровыжигатель. Энциклопедия радиоэлектроники и электротехники

▪ статья Автоматическое зарядное устройство для Ni-Cd-аккумуляторов. Энциклопедия радиоэлектроники и электротехники

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:





Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2026