Menu Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Портативный аккумуляторный источник питания. Энциклопедия радиоэлектроники и электротехники

Бесплатная техническая библиотека

Энциклопедия радиоэлектроники и электротехники / Зарядные устройства, аккумуляторы, гальванические элементы

Комментарии к статье Комментарии к статье

В настоящее время широкое распространение получили различные компактные устройства с питанием от встроенных аккумуляторов, например, мобильные телефоны, мультимедийные карманные плейеры, планшетные компьютеры, навигаторы, цифровые фотоаппараты и т. п. Из-за стремления к уменьшению габаритов и массы этих устройств в большинстве случаев они оснащаются аккумуляторами небольшой емкости, что может причинять неудобства при их автономной эксплуатации.

Чтобы уменьшить зависимость таких устройств от емкости и состояния встроенных аккумуляторов, а также наличия сети 230 В, можно изготовить предлагаемое устройство, от которого можно будет питать различную радиоаппаратуру и заряжать встроенные в нее аккумуляторы. Схема устройства показана на рис. 1. Оно представляет собой источник питания с четырьмя Li-Ion аккумуляторами типоразмера 18650. Донором таких аккумуляторов и контроллера для них послужила аккумуляторная батарея от неисправного нетбука. На ней было указано наименование - P22-900, емкость - 5800 мА·ч и номинальное напряжение - 7,2 В. Устройство обеспечивает на выходе стабилизированное напряжение 5 или 6,2 В при токе нагрузки до 1 А или нестабилизированное 6...8,4 В при токе до 1,4 А. Кратковременно (менее 5 с раз в две минуты) ток нагрузки при любом выходном напряжении может быть до 2 А, это позволит подключать фотоаппарат с фотовспышкой с разряженным внутренним источником питания.

Портативный аккумуляторный источник питания
Рис. 1. Схема аккумуляторного источника питания (нажмите для увеличения)

Аккумуляторная батарея состоит из четырех аккумуляторов G1-G4, которые подключены к контроллеру A1 попарно параллельно-последовательно. Нумерация выводов контроллера - условная, начинается от первого минусового вывода разъема для подключения батареи к нетбуку. Чтобы иметь возможность питать от батареи различные устройства и для ее подзарядки необходимо на вывод 5 подать напряжение низкого логического уровня.

Для зарядки аккумуляторной батареи на вход устройства (гнездо XS1) подают постоянное напряжение 12...16 В. Диод VD1 служит для защиты от неправильной полярности этого напряжения. На интегральной микросхеме DA1 собран линейный стабилизатор напряжения 9 В. С его выхода напряжение через токоограничивающие резисторы R7, R8 и диод VD5 поступает на выводы питания контроллера A1. Транзистор VT1 открывается при подключении к гнезду XS1 внешнего источника питания, что включает контроллер A1. Светящийся светодиод HL1 сигнализирует о протекающем процессе зарядки аккумуляторной батареи. При токе более 50 мА транзистор VT2 (германиевый) открывается и светодиод HL1 светит с максимальной яркостью. Прекращение свечения этого светодиода означает окончание зарядки батареи. Конденсаторы С2-С4 и C6 - блокировочные по питанию микросхемы DA1. Светодиод HL3 светит при наличии напряжения 9 В. На монтажной плате контроллера A1 был обнаружен самовосстанавливающийся предохранитель на ток 5 A. Поскольку изготовленное устройство рассчитано на меньший ток, для защиты от повреждений был установлен дополнительный самовосстанавливающийся предохранитель F1 на ток 1,6 А.

На микросхеме KA78R05 (DA2) собран стабилизатор напряжения 5 и 6,2 В. Эта микросхема представляет собой управляемый линейный стабилизатор напряжения положительной полярности 5 В с выходным током до 1 А, максимальная рассеиваемая мощность - 15 Вт, потребляемый ток - около 10 мА. Микросхема отличается от обычных интегральных стабилизаторов малым минимально допустимым падением напряжения между входом и выходом, которое при токе нагрузки 1 А не превышает 0,5 В. Также имеется вход (вывод 4) для включения и выключения стабилизатора.

При замкнутых контактах кнопки SB1 на выводе 5 контроллера A1 будет низкий логический уровень, поэтому на выходе контроллера (выводы 7 и 8) присутствует напряжение аккумуляторной батареи. При этом через резистор R1 протекает ток около 0,3 мкА. Через замкнутые контакты кнопки SB2.1 напряжение батареи поступает на вход стабилизатора напряжения 5/6,2 В. При замкнутых контактах кнопки SB3.1 напряжение на выходе - 5 В, при разомкнутых - 6,2 В, которое задается последовательно включенными диодами VD2 и VD3. Резисторами R4, R6 задается пороговое напряжение включения/выключения стабилизатора. При указанных на схеме номиналах резисторов - это напряжение 6,3 В при замкнутых контактах SB3.1 и 7,3 В - при разомкнутых. Гистерезис переключения - около 0,12 В.

Когда контакты кнопки SB2 находятся в нижнем по схеме положении, питание поступает не на стабилизатор напряжения DA2, а на гнездо XS2. В этом случае можно контролировать состояния аккумуляторной батареи и питать различные устройства, не требующие стабилизированного напряжения.

Двухцветный светодиод HL2 светит зеленым цветом при выходном напряжении устройства 6,2 В и красным при 5 В. При выходном напряжении 5 В оно поступает на выходные гнезда XS2 и XS3 (разъем USB). Выходное напряжение 5, 6,2 и 7,2 В поступает на гнездо XS2.

Перед тем как дать вторую жизнь литиевой аккумуляторной батарее нетбука, ее склеенный пластмассовый корпус аккуратно вскрывают по шву. Если аккумуляторы окажутся разряженными "в ноль", их можно несколько минут подзарядить напрямую, минуя контроллер, током 0,5...1 А через токоограничивающий резистор или от источника тока. За это время аккумуляторы наберут напряжение, достаточное для включения контроллера. Измеренная емкость полностью заряженной батареи составила около 5400 мА·ч при разрядке током 1 А, что для батареи возрастом около десяти лет неплохой показатель. На плате контроллера (рис. 2) была маркировка BLA4AE00. Назначение проводов следующее. В центре два синих - минус контроллера, зеленый - управление, два красных - плюс контроллера. По краям платы: контакт VC (синий провод) - минус элементов G2 и G4, контакт Vp (красный провод) - плюс элементов Gl и G3, контакт VM в центре (провод не припаян) - общий элементов G1-G4. Контроллер отключает зарядку аккумуляторной батареи при достижении напряжения 8,4 В. Если в вашем распоряжении окажется другая батарея с другим контроллером, назначение его выводов можно узнать в Интернете или экспериментально. В случае, если применить батарею от ноутбука на рабочее напряжение 10,8 В или 14,4 В, то из-за большой разницы между входным и выходным напряжениями на месте стабилизатора DA2 рекомендуется применить импульсный понижающий стабилизатор напряжения.

Портативный аккумуляторный источник питания
Рис. 2. Плата контроллера

Перед сборкой устройства аккумуляторы отсоединяют от контроллера. Подключают их на финальной стадии сборки и тестирования конструкции, при этом надо быть внимательным - ток короткого замыкания выводов даже малогабаритного аккумулятора может достигать десятков ампер.

Часть элементов размещена на монтажной плате размерами 37x62 мм, а микросхемы - на теплоотводе (рис. 3). Монтаж - двухсторонний навесной. Микросхему AN78M09 можно заменить отечественной КР142ЕН8А или любой из серии ххх78М09хх. Если применить микросхему серии ххх78R09, минимальное входное напряжение устройства может быть 10,5 В. Микросхему KA78R05 можно заменить любой из серии ххх78R05 в изолированном четырехвыводном корпусе TO-220F-4L. Обе микросхемы установлены на общий ребристый дюралюминиевый теплоотвод с площадью охлаждающей поверхности 50 см2 с применением теплопроводной пасты КПТ-8 или аналогичной. В корпусе устройства рядом с теплоотводом необходимо сделать несколько десятков вентиляционных отверстий. Соединительные провода, идущие к выводам микросхем, должны быть как можно короче.

Портативный аккумуляторный источник питания
Рис. 3. Размещене элементов на монтажной плате

Транзистор 2SC3199 можно заменить любым из серий 2SC815, 2SC845, 2SC1815, 2SC9014, КТ3102, КТ6111, германиевый транзистор SFT307 - отечественными из серий МП25, МП26, МП39, МП40, МП41, МП42. Чем больше коэффициент передачи тока базы этого транзистора, тем лучше. Диод SR504 можно заменить диодом SR505, SR506, SR306, SR360, 1N5822. Вместо диода 1N5402 подойдет любой из серий Ш540х, SRP300х, FR30х. Диоды 1N4002 можно заменить любыми из серий Ш400х, RL10х. Резисторы - любые соответствующей мощности. Оксидные конденсаторы - импортные, C1 - керамический или пленочный на номинальное напряжение не менее 35 В. Конденсаторы C3, C4, C8, С9, C11 - керамические для поверхностного монтажа, они припаяны непосредственно к выводам питания соответствующих микросхем или выводам оксидных конденсаторов. Остальные конденсаторы - керамические К10-17. Светодиод RL30-YG414S зеленого цвета свечения и RL30-SR114S красного можно заменить любыми обычными маломощными.

Двухцветный светодиод L119SURKMGKWT можно заменить любым двухцветным с общим катодом из серии L119. Если светодиод будет с повышенной яркостью свечения, сопротивление резистора R10 можно увеличить в несколько раз, что уменьшит ток, потребляемый устройством от аккумуляторной батареи.

Переключатель режимов работы (кнопки SB1-SB4) - счетверенный блок переключателей П2К с зависимой фиксацией, по две группы переключаемых контактов на каждой кнопке. При нажатии на одну из них остальные возвращаются в исходное положение. Перед сборкой конструкции протестируйте такой переключатель, при необходимости очистите его контакты от окислов. Он приклеен к корпусу устройства термоклеем и полимерным клеем "Квинтол". Аккумуляторные элементы закреплены в корпусе с помощью мягкой двухсторонней липкой ленты.

Устройство собрано в пластмассовом корпусе размерами 28x91x175 мм. Вид на компоновку узлов показан на рис. 4. Масса собранного устройства - около 380 г. Для питания устройства можно использовать автомобильную бортовую сеть 12 В или другой источник напряжения 12...16 В, рассчитанный на ток нагрузки не менее 0,7 А. При подаче на гнездо XS1 напряжения питания на подключенную к устройству нагрузку будет поступать напряжение питания вне зависимости от положения контактов кнопки SB1.

Портативный аккумуляторный источник питания
Рис. 4. Вид на компоновку узлов

Ёмкости батареи 5,8 А·ч достаточно для питания, например, радиоприемника "Океан-209" в течение около 170 ч, работающего на средней громкости (100 мВт), или на 60...80 часов питания компактного карманного МР3-плейера (потребляемый ток - 60...80 мА), что примерно десятикратно превышает возможности встроенного аккумулятора. Можно также несколько раз полностью зарядить аккумулятор (емкостью 800...1000 мА·ч) мобильного телефона. Не забывайте после пользования устройством выключать его питание и подключенных к нему нагрузок нажатием на кнопку SB1.

Автор: А. Бутов

Смотрите другие статьи раздела Зарядные устройства, аккумуляторы, гальванические элементы.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Впервые преоодолена передача ВИЧ от матери к ребенку 02.01.2026

Проблема вертикальной передачи ВИЧ - от матери к ребенку - остается одной из ключевых задач глобальной медицины. Недавний отчет Всемирной организации здравоохранения (ВОЗ) демонстрирует историческое достижение: Бразилия впервые в своей истории полностью преодолела этот путь передачи вируса. Страна стала 19-й в мире и первой с населением более 100 миллионов человек, которая достигла такого результата. Достижения Бразилии основаны на комплексных медицинских программах, обеспечивающих своевременный доступ к диагностике и терапии для всех слоев населения. ВОЗ официально подтвердило, что уровень передачи ВИЧ от матери к ребенку снизился до менее двух процентов. Более 95% беременных женщин в стране получают регулярный скрининг на ВИЧ и необходимое лечение в рамках стандартного ведения беременности. Изначально программа тестировалась в крупных муниципалитетах и штатах с населением более 100 тысяч человек, а затем была масштабирована на всю страну. Такой подход позволил унифицировать ста ...>>

Нанослой германия увеличивает эффективность солнечных батарей на треть 02.01.2026

Разработка высокоэффективных солнечных батарей остается одной из ключевых задач современной энергетики. Недавнее исследование южнокорейских ученых позволило повысить производительность тонкопленочных солнечных элементов почти на 30%, что открывает новые перспективы для возобновляемых источников энергии, гибкой электроники и сенсорных устройств. Команда исследователей сосредоточилась на элементах на основе моносульфида олова (SnS) - нетоксичного и доступного материала, который идеально подходит для гибких солнечных панелей. До настоящего времени эффективность SnS-устройств оставалась низкой из-за проблем на границе контакта с металлическим электродом. В этой области возникали структурные дефекты, диффузия элементов и электрические потери, что существенно ограничивало возможности таких батарей. "Этот интерфейс был главным барьером для достижения высокой производительности", - отмечает профессор Джейонг Хо из Национального университета Чоннам. Для решения этих проблем ученые предлож ...>>

Электростатическое решение для борьбы с льдом и инеем 01.01.2026

Борьба с льдом и инеем на транспортных средствах и критически важных поверхностях зимой остается сложной и затратной задачей. Ученые из Virginia Tech разработали инновационную технологию, способную разрушать лед и иней без использования тепла или химических реагентов, что открывает новые возможности для безопасной и экологичной зимней эксплуатации транспорта. Исследователи обнаружили, что лед и иней образуют кристаллическую решетку с так называемыми ионными дефектами - заряженными участками, способными перемещаться под воздействием электрического поля. Эти дефекты являются ключом к управлению прочностью льда и его удалением с поверхностей. Когда на замерзшую поверхность подается положительный электрический заряд, отрицательные ионные дефекты притягиваются к источнику поля. Это вызывает разрушение кристаллической решетки льда, в результате чего часть льда буквально "отскакивает" от поверхности. Такой эффект позволяет удалять лед без применения внешнего тепла или химических средств ...>>

Случайная новость из Архива

Охлаждение электроники прыгающими капельками 17.04.2017

Проблема теплоотвода в современной компьютерной индустрии стоит остро: несмотря на уменьшение размеров транзистора, сложность процессоров и графических ядер постоянно растет, причем вместе с тактовыми частотами, что выливается в соответствующее увеличение тепловыделения.

Все реже встречаются на рынке однослотовые видеокарты достаточно серьезного уровня, а громоздкие СЖО прочно заняли место воздушных кулеров в системах энтузиастов. Но технология "Jumping Droplets" (прыгающие капельки), как обещают ее разработчики, может существенно поднять эффективность систем охлаждения, особенно в случае возникновения точечных участков сильного нагрева.

Работает новый метод примерно так же, как цикады защищают от намокания свои хрупкие крылышки. Дело в том, что при достаточной гидрофобности (свойство отталкивать влагу) поверхности объединение двух крошечных капелек воды генерирует достаточно энергии для того, чтобы получившаяся более крупная капля сама оторвалась от этой поверхности. "Эффект цикады" известен довольно давно и хорошо описан в науке, но применить его для охлаждения микроэлектроники удалось впервые. Как было выяснено в совместной работе Intel и Duke University, это свойство можно использовать и для охлаждения современных микрочипов.

Траектория прыжков капель может быть такой, что их конечным пунктом назначения окажется поверхность, требующая активного охлаждения. Основную сложность при практической реализации принципа представляет поиск материалов с нужной степенью гидрофобности.

Технически это несколько напоминает испарительную камеру, работающую, однако, "наоборот". Условный пол этой камеры сделан из гидрофобного материала, а потолок - напротив, представляет собой пористую губку. Горячие области провоцируют испарение жидкости, находящейся в структурах потолка, в сторону пола, где она конденсируется в капли. Капель становится больше, они начинают объединяться - и прыгать за счет вышеописанного "эффекта цикады" к потолку, после чего цикл повторяется, причем такая камера будет работать вне зависимости от направления вектора гравитации и ориентации в пространстве, важно лишь разделение на "пол" и "потолок". Такая система теплоотвода эффективнее традиционных, поскольку работает не только на плоскости, но и в пространстве, заявляют разработчики. При этом она, в отличие от термоэлектрической, не требует подвода энергии извне.

Глава команды профессор Чэнь Чуаньхуа (Chuan-Hua Chen) уверен, что вскоре новую технологию удастся стандартизировать, а от этого пункта до выпуска первых работоспособных систем охлаждения на новом принципе - один шаг.

Другие интересные новости:

▪ Названо самое мощное извержение вулкана за последние 7 тысячелетий

▪ Смартфон Nokia N9

▪ Держи ноги в тепле

▪ Из-за глобального потепления грядут суровые зимы

▪ Жизнь у ветряной турбины

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Антенны. Подборка статей

▪ статья Парацельс. Знаменитые афоризмы

▪ статья Каковы размеры молекул? Подробный ответ

▪ статья Мята полевая. Легенды, выращивание, способы применения

▪ статья Двухканальный усилитель мощности на микросхеме MAX9751. Энциклопедия радиоэлектроники и электротехники

▪ статья Увидеть невидимое. Физический эксперимент

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:





Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2025