Menu Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Блок управления лабораторным трансформатором. Энциклопедия радиоэлектроники и электротехники

Бесплатная техническая библиотека

Энциклопедия радиоэлектроники и электротехники / Блоки питания

Комментарии к статье Комментарии к статье

Радиолюбителю часто требуется регулируемое переменное напряжение. Обычно его получают с помощью лабораторного регулируемого автотрансформатора (ЛАТР). К сожалению, выход ЛАТР имеет гальваническую связь с сетью, а его подвижный электрод (ползунок) часто обгорает. Помимо порчи самого ползунка, это чревато и выходом из строя обмотки. Да и цена хорошего ЛАТР весьма высока, а изготовить его самостоятельно под силу немногим.

Есть давно известный способ регулировать напряжение на нагрузке, используя не автотрансформатор, а обычный трансформатор с несколькими вторичными обмотками, коммутируемыми переключателями. Такой трансформатор описан, например, в статье А. Терскова "С шагом в один вольт" ("Радио", 1993, № 9, с. 24, 25). Его выход гальванически не связан с сетью, а выходное напряжение можно регулировать с шагом 1 В от 0 до 255 В.

К сожалению, постоянная необходимость расчетов для правильной коммутации вторичных обмоток такого трансформатора на нужное напряжение затрудняет его использование. О монотонном увеличении или уменьшении напряжения мелкими ступенями при этом и говорить не приходится. Но самый главный недостаток такого решения - установка всего одного переключателя в неправильное положение может вывести нагрузку, особенно низковольтную, из строя.

Чтобы не допустить подобных неприятностей, а также упростить пользование трансформатором, разработано устройство, представленное ниже. Ставилась цель использовать детали, которые наверняка найдутся в запасах радиолюбителя. Блок можно и упростить, но об этом будет сказано далее.

Схема лабораторного трансформатора (без блока управления) изображена на рис. 1. От схемы из упомянутой выше статьи А. Терскова она отличается только тем, что ручные переключатели заменены электромагнитными реле. Их контактные группы K1.1-K8.1 соединены так, что при обесточенных обмотках всех реле напряжение на выходе отсутствует. Так сделано для того, чтобы при переходных процессах, возникающих при включении трансформатора в сеть, на выходе не появилось напряжение. Максимальное напряжение (255 В) на выходе будет только в том случае, если сработали все реле.

Блок управления лабораторным трансформатором
Рис. 1. Схема лабораторного трансформатора (без блока управления)

В отличие от оригинала, трансформатор T1 имеет дополнительную обмотку X с диодным выпрямительным мостом VD1 для питания обмоток реле и интегральным стабилизатором напряжения DA1 питания микросхем блока управления.

Блок управления, схема которого изображена на рис. 2, ставит в соответствие каждому из возможных значений выходного напряжения (от 0 до 255 В с шагом 1 В) восьмиразрядный (по числу реле, переключающих обмотки) двоичный код. Единица в любом разряде этого кода означает, что соответствующее реле должно сработать, ноль означает, что оно должно отпустить якорь.

Блок управления лабораторным трансформатором
Рис. 2. Схема блока управления (нажмите для увеличения)

При напряжении на первичной обмотке трансформатора 230 В выходное напряжение в вольтах равно числу, установленному нажатиями на кнопки SB1 и SB2 на индикаторах HG1-HG3. Необходимость в процессе эксплуатации думать о правильной коммутации вторичных обмоток отпадает, что повышает удобство и оперативность установки нужного выходного напряжения.

Следует, правда, отметить, что блок управления не измеряет выходное напряжение, а только показывает на индикаторе его "теоретическое" значение. По этой причине, при отличии напряжения в сети от номинального и под влиянием нагрузки, фактическое выходное напряжение может отличаться от того значения, что показывают индикаторы.

Условно блок управления можно разделить на несколько функциональных узлов. Это - реверсивный счетчик на микросхемах DD2-DD4 с управляющей им логикой на микросхеме DD1, преобразователь кода на микросхеме РПЗУ DS1, блок индикации на микросхемах DD5-DD7.

На логическом элементе DD1.1 построен генератор импульсов частотой около 2 Гц. Элемент DD1.4 инвертирует сигнал генератора. Инверсия нужна для того, чтобы счетчики DD2-DD4 изменяли состояние при нажатии, а не при отпускании кнопок SB1 и SB2.

Регулируют напряжения кнопками SB1 (в сторону уменьшения) и SB2 (в сторону увеличения). Цепи R1C3и R3C4 подавляют дребезг контактов кнопок. Пока ни одна из кнопок не нажата, на управляющем входе генератора (выводе 1 DD1) установлен низкий логический уровень. При нажатии на кнопку SB1 на этот вход через резистор R9 и развязывающий диод VD4 поступает напряжение высокого уровня. Через некоторое время генератор запускается. Если на кнопку нажимать кратковременно, генератор не заработает, но на его выходе в ответ на каждое нажатие появится одиночный импульс. С каждым импульсом содержимое счетчика уменьшается на единицу.

Чтобы по достижении счетчиками нулевого состояния избежать их резкого перехода в состояние 999, при достижении нуля работу генератора блокирует через диод VD6 низкий логический уровень сигнала переполнения с вывода 7 счетчика DD4. Далее запуск генератора возможен только кнопкой SB2. Работа этой кнопки аналогична, но, помимо запуска генератора, она подает высокий уровень на входы управления направлением счета (выводы 10) счетчиков DD2-DD4. По достижении максимального значения 255 уровень напряжения на выходе элемента DD1.3 становится низким и через диод VD3 блокирует работу генератора.

Поскольку устройство не должно реагировать на одновременное нажатие обеих кнопок, в него введен узел блокировки (резисторы R2, R6, R7). Напряжение с резистора R2 подано на вход разрешения счета (вывод 5) счетчика DD2. Если нажаты обе кнопки, уровень этого напряжения становится высоким, что запрещает счет импульсов.

Цепь R11C12 служит для обнуления счетчиков DD2-DD4 при подаче напряжения питания. Можно обнулить их в любой момент и нажатием на кнопку SB3. Поскольку выводы 9 счетчиков соединены с общим проводом, счетчики работают в десятичном режиме, формируя на выходах трехзначное десятичное число в двоично-десятичном коде - заданное значение выходного напряжения. Это число поступает на адресные входы ППЗУ DS1. Каждому значению выходного напряжения в нем соответствует ячейка памяти, в которой записан двоичный эквивалент двоичнодесятичного числа. Например, по адресу 10 0011 0000 (двоично-десятичное представление числа 230) находится код 11100110 (двоичное число, равное десятичному 230).

Код с выходов РПЗУ DS1 подан на электронные ключи, собранные на транзисторах VT1 -VT8 и управляющие реле K1-K8. На рис. 2 представлена схема только одного ключа, остальные идентичны. Ключи на дискретных транзисторах можно заменить микросхемой КР1109КТ63 (ULN2803A), содержащей восемь таких ключей.

Число с выходов счетчиков поступает и на узел индикации, состоящий из преобразователей двоично-десятичного кода в "семиэлементный" DD5-DD7 и светодиодных индикаторов HG1-HG3. Индикатор HG3 показывает единицы, HG2 - десятки, а HG1 - сотни вольт.

На транзисторе VT9 выполнен узел гашения незначащего нуля в старшем разряде индикатора. Коллектор этого транзистора соединен с входом гашения индикации преобразователя кода DD7. Если счетчик DD4 содержит число 1 или 2, то в базовую цепь транзистора VT9 через диод VD18 или VD19 поступает напряжение высокого уровня, транзистор открыт, индикатор HG1 включен.

Аналогично на транзисторе VT10 построен узел гашения незначащего нуля на индикаторе HG2. Если число в счетчике DD3 отлично от нуля, на базу транзистора VT10 через диоды VD20- VD23 поступает напряжение высокого уровня. Низкий логический уровень на коллекторе VT10 разрешает работу преобразователя кода DD6 и индикатора HG2. Если в счетчике DD3 ноль, но открыт транзистор VT9 (в счетчике DD4 1 или 2), то на вход гашения индикации преобразователя кода DD6 напряжение низкого уровня поступает через диод VD24 с коллектора транзистора VT9.

От диодов VD18-VD23 можно было отказаться, подав в базовые цепи транзисторов VT9 и VT10 сигналы с выходов переполнения соответствующих счетчиков, но в этом случае погашенные незначащие нули будут вспыхивать при нажатиях на кнопку SB2.

При желании узел индикации можно исключить, а к выходу трансформатора подключить вольтметр переменного тока с пределом измерения 300 В. В этом случае можно удалить также микросхему РПЗУ и счетчик DD4, а оставшиеся два переключить на работу в двоичном режиме. Сигналы на транзисторные ключи, управляющие реле, в этом случае следует подавать с выходов счетчиков. Точность установки выходного напряжения при таком упрощении будет зависеть от погрешности вольтметра.

Печатная плата для блока управления не разрабатывалась, однако часть узлов можно разместить на печатных платах, представленных на рис. 3 и рис. 4. Они в свое время разработаны для других устройств, но подойдут и для представленного в статье. Остальные элементы можно смонтировать на макетной плате, соединив их выводы монтажным проводом. Блокировочные конденсаторы C5-C10 устанавливают непосредственно на выводах питания микросхем. Обратите внимание, что на рис. 3 выделены цветом номера точек подключения платы индикации к выходам счетчиков. Эти номера совпадают с номерами проводов соответствующего жгута на схеме рис. 2.

Блок управления лабораторным трансформатором
Рис. 3. Печатная плата блока управления

Блок управления лабораторным трансформатором
Рис. 4. Печатная плата блока управления

В устройстве применены резисторы МЛТ, все конденсаторы - импортные. Вместо транзисторов КТ315Г можно применить любые транзисторы той же серии. Кроме того, транзисторы КТ315Г (VT1-VT8) можно заменить на 2SС945, а остальные - на любые маломощные n-p-n транзисторы. Диоды КД522А можно заменить на КД521, КД510 с любыми буквенными индексами или на 1N4148. Замена диодов КД243В - широко распространенные диоды 1N4007. Возможность замены микросхем серий К176 и К561 их импортными аналогами не проверялась. Микросхему КР573РФ5 перед установкой в устройство необходимо запрограммировать. Допускается ее замена на импортную серии 2716 или 27С16.

Кнопки и переключатели могут быть любыми. Реле использованы импортные RAS-1215, их можно заменить другими с рабочим напряжением обмотки 12 В и с контактами на переключение, способными коммутировать нужный ток нагрузки. Сопротивление обмотки примененных реле - 400 Ом.

Трансформатор T1 может быть намотан по рекомендациям А. Терскова, но с дополнительной обмоткой X на напряжение 10 В, намотанной проводом диаметром не менее 0,4 мм. Но вместо магнитопровода ПЛ 25x50x100 лучше применить магнитопровод ШЛ близкого сечения - гораздо проще наматывать обмотки не на двух, а на одном каркасе.

Налаживание устройства состоит в подборке, если нужно, частоты генератора на элементе DD1.1. При указанных на схеме номиналах элементов она - около 2 Гц. Слишком высокой эту частоту устанавливать не следует, поскольку будут сильно искрить и подгорать контакты реле. Желательно также проверить правильность программирования ПЗУ. При установке на индикаторах HG1-HG3 значения выходного напряжения на выходах РПЗУ DS1 должен появляться двоичный код этого числа.

Если необходимо, можно ускорить установку напряжения, введя дополнительный переключатель SA1 и кнопку SB4 согласно схеме, показанной на рис. 5. При показанном на ней положении переключателя SA1 устройство работает как обычно. При включении режима быстрой установки все реле будут выключены, что сделает напряжение на выходе трансформатора нулевым. Кнопкой SB4 подключают параллельно резистору R5 резистор R35, увеличивая этим частоту генератора приблизительно в пять раз. Теперь можно быстро установить на индикаторе нужное значение, а затем, вернувшись в обычный режим, получить на выходе требуемое напряжение.

Блок управления лабораторным трансформатором
Рис. 5. Схема включения переключателя SA1 и кнопки SB4

Эксплуатацию трансформатора с описанным блоком управления сопровождает такое неприятное явление, как подгорание контактов реле (чему, впрочем, подвержены и ползунок ЛАТР, и переключатели). Если нагрузка трансформатора содержит индуктивную составляющую (например, двигатель или другой трансформатор), то может потребоваться зашунтировать контакты реле защитными RC-цепями (на схеме рис. 1 не показаны). Как вариант, можно устанавливать напряжение без нагрузки, а нагрузку подключать после, тогда подгорания контактов не будет.

В заключение отмечу, что применение описанного блока управления не ограничено только лабораторным трансформатором, его можно использовать, например, в блоке питания. В этом случае на трансформаторе следует оставить только первичную обмотку, вторичные обмотки II-VII и X и пять реле (K1 - K5). Можно будет устанавливать напряжение от 1 до 31 В с шагом 1 В, чего для большинства лабораторных блоков питания вполне достаточно.

Файлы программирования РПЗУ DS1 в нескольких форматах с одинаковым содержимым можно скачать с ftp://ftp.radio.ru/pub/2016/09/trans.zip.

Автор: Е. Герасимов

Смотрите другие статьи раздела Блоки питания.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Кислотность океана разрушает зубы акул 03.10.2025

Мировые океаны выполняют важнейшую функцию - они поглощают около трети углекислого газа, выбрасываемого в атмосферу. Это помогает замедлять темпы глобального потепления, но имеет и обратную сторону. Растворяясь в воде, CO2 образует угольную кислоту, которая повышает концентрацию водородных ионов и приводит к снижению pH. Вода становится более кислой, а последствия этого процесса уже заметны для морских экосистем. Средний показатель кислотности океана сейчас равен примерно 8,1, тогда как еще недавно за условную норму брали значение 8,2. По прогнозам, к 2300 году уровень может упасть до 7,3 - это сделает океан почти в десять раз кислее нынешнего состояния. Для обитателей морей подобные изменения означают не просто сдвиг химического равновесия, а реальную угрозу физиологическим процессам, начиная от формирования раковин у моллюсков и заканчивая охотничьим поведением акул. Чтобы выяснить, как именно кислотная среда отражается на зубах акул, группа немецких исследователей провела эксп ...>>

Почтовый космический корабль Arc 03.10.2025

Космические технологии становятся частью инфраструктуры, способной повлиять на логистику, медицину и даже военную сферу. Идея использовать орбиту как глобальный склад для срочных поставок звучала еще недавно как научная фантастика, но стартап Inversion пытается превратить ее в практическое решение. Компания Inversion появилась в начале 2021 года благодаря Джастину Фиаскетти и Остину Бриггсу, которые на тот момент были студентами Бостонского университета. Их замысел состоял в том, чтобы сделать возможной доставку грузов не только через спутниковые сети данных, но и в буквальном смысле - физических предметов. В основе лежит простая мысль: если космос обеспечивает доступ к любой точке Земли, то и грузы должны перемещаться тем же маршрутом. Уже за три года работы команда из 25 специалистов успела построить демонстрационный аппарат "Ray". Его запуск состоялся в рамках миссии SpaceX Transporter-12. Устройство весом 90 килограммов проверяло ключевые технологии Inversion, включая двухком ...>>

Лазерное обогащение урана 02.10.2025

Ядерная энергия остается одним из ключевых источников стабильного электричества, особенно для стран с растущими потребностями в энергоснабжении. Однако обеспечение бесперебойных поставок топлива для атомных станций требует современных технологий обогащения урана, которые одновременно эффективны и безопасны. Американская компания Global Laser Enrichment (GLE) делает значительный шаг в этом направлении, завершив масштабное тестирование лазерной технологии обогащения урана. Демонстрационная программа была проведена на объекте в Уилмингтоне, Северная Каролина. Тестирование технологии SILEX (Separation of Isotopes by Laser EXcitation), разработанной австралийской Silex Systems, стартовало в мае 2025 года и продлится до конца года. В ходе экспериментов компания планирует получить сотни фунтов низкообогащенного урана (LEU), который может быть использован в качестве топлива для атомных электростанций. GLE была создана в 2007 году для коммерциализации лазерных методов обогащения урана в С ...>>

Случайная новость из Архива

Солончаковые микробы для водородной энергетики 31.07.2013

В сильно соленых водах солончаковых озер живут особые микроорганизмы, галобактерии, которые придают озерам специфический розовый цвет. Как оказалось, белок, содержащийся в мембранах галобактерий, может совершить революцию в производстве водородного топлива.

Ученые из Аргоннской национальной лаборатории Министерства энергетики США предложили новый способ использования солнечного света для создания экологически чистого водородного топлива. Ведущий автор исследования - специалист в области нанотехнологии Елена Рожкова, которая работает на Министерство энергетики США. Основная цель этой работы - отправить на задворки истории нефть, как основной источник горючего для современного транспорта.

Не исключено, что галобактерии могут помочь в производстве дешевого водородного топлива, по крайней мере эксперименты указывают на такую возможность. Елена Рожкова и ее коллеги смогли объединить бактериальный пигмент бактериородопсин с полупроводниковыми наночастицами из диоксида титана и платины. В результате получился комплекс, который способен выступать в качестве катализатора при производстве водорода.

Ученым и ранее было известно о большом потенциале наночастиц диоксида титана в альтернативной энергетике. Так, еще в 1970 году японские ученые обнаружили, что электрод из диоксида титана на ярком ультрафиолетовом свету способен разделять молекулы воды и вырабатывать таким образом водород Это явление известно под именем эффект Хонда-Фудзисима. С тех пор ученые прилагают большие усилия по коммерческому применению данной технологии, но, к сожалению, диоксид титана реагирует только с ультрафиолетовым светом, в результате чего большая часть солнечного света для производства водорода не используется.

Ученые решили восполнить этот пробел с помощью бактериородопсина, который может выступать в качестве протонного насоса и вместе с наночастицами создает гибридную схему, эффективно использующую для выработки водорода максимум солнечного света.
Протонный насос основан на белках, которые в природе вызывают колебания клеточной мембраны и передают протоны изнутри клетки во внеклеточное пространство. В новой установке протоны, поставляемые бактериородопсином, взаимодействуют со свободными электронами на небольших участках платины, расположенных в матрице из диоксида титана. При обучении этой конструкции солнечным светом, на наночастицах платины образуются молекулы водорода.

Новый "биогибридный" фотокатализатор превосходит большинство других подобных систем по производству водорода и может стать коммерчески эффективным источником экологически чистого топлива. При этом все сырье, которое понадобится для производства водорода - это соленая морская вода и солнечный свет. Позднее сгоревший водород вновь превратится в воду, выпадет дождем или снегом, и цикл круговорота сырье/топливо повторится.

Другие интересные новости:

▪ Объектив Sony FE 24-50mm F2.8 G

▪ 60 и 75-вольтовые MOSFET-транзисторы для цепей синхронного выпрямления

▪ SNSPD-камера для исследования фотонов

▪ Редкоземельные материалы из сточных вод

▪ Тепловые волны участились и удлинились

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Звонки и аудио-имитаторы. Подборка статей

▪ статья Раздавите гадину! Крылатое выражение

▪ статья Какую цель ставил Магеллан перед кругосветным плаванием? Подробный ответ

▪ статья Валериана лекарственная. Легенды, выращивание, способы применения

▪ статья Измерение емкости и ЭПС конденсаторов комбинированным прибором. Энциклопедия радиоэлектроники и электротехники

▪ статья Неуязвимая бумага. Секрет фокуса

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:





Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2025