Menu Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Преобразователь напряжения для светодиодной лампы. Энциклопедия радиоэлектроники и электротехники

Бесплатная техническая библиотека

Энциклопедия радиоэлектроники и электротехники / Преобразователи напряжения, выпрямители, инверторы

Комментарии к статье Комментарии к статье

Вне всякого сомнения, светодиоды на сегодняшний день являются самыми экономичными и долговечными источниками света. Появившиеся в последние годы новые приборы этого класса произвели своего рода революцию в сфере освещения и иллюминации. Широкое распространение в быту получили светодиодные лампы, пришедшие вместе с компактными люминесцентными лампами (КЛЛ) на смену неэкономичным и недолговечным лампам накаливания, а сегодня ими все чаще заменяют и КЛЛ.

К сожалению, несмотря на заверения производителей о долговечности, исчисляемой многими десятками тысяч часов, и светодиодные лампы иногда выходят из строя, причем гораздо раньше срока. И причина нередко не в качестве светодиодов, а, скорее всего, в скупости производителей: чтобы сэкономить на стоимости ламп, светодиоды в них заставляют работать в экстремальных условиях, при значениях тока, близких к предельно допустимым, что оказывает заметное влияние на скорость деградации кристалла и люминофоров, а также на надежность лампы. А если учесть, что из-за малых габаритов ламп к вышесказанному добавляются неудовлетворительные условия охлаждения светодиодов, неудивительно, что иногда такие лампы выходят из строя уже через несколько часов работы.

Анализ неисправностей перегоревших ламп показывает, что в 90 % случаев выходит из строя один из светодиодов, при этом драйвер, как правило, остается исправным. Ремонт таких ламп несложен, но без принятия мер по уменьшению тока через оставшиеся светодиоды зачастую бесполезен: через некоторое время лампа снова выходит из строя.

Рассмотрим возможность восстановления лампы Elektrostandard мощностью 7 Вт. Ее внешний вид и вид на плату драйвера со стороны печатных проводников показаны на рис. 1. Сначала следует любым способом найти сгоревший светодиод и замкнуть его перемычкой. Далее необходимо уменьшить ток через светодиоды. Для контроля тока служит датчик, состоящий из двух соединенных параллельно резисторов SMD (обведены на рис. 1 красным кружком). Чтобы уменьшить ток, их нужно выпаять и на место любого из них впаять новый сопротивлением 2 Ом. После такого ремонта мощность и светоотдача лампы несколько снизятся, но она будет способна работать еще длительное время. Сказанное полностью применимо и к аналогичным лампам мощностью 15 Вт (рис. 2). На их плате для уменьшения тока через светодиоды необходимо выпаять один из резисторов сопротивлением 5,6 Ом (также обведены красным кружком).

Преобразователь напряжения для светодиодной лампы
Рис. 1. Лампа Elektrostandard

Преобразователь напряжения для светодиодной лампы
Рис. 2. Лампа Elektrostandard

Но иногда восстановить лампу невозможно из-за выхода из строя контроллера. В этом случае светодиоды можно питать от другого источника. Ниже рассмотрен вариант подключения платы светодиодов ламп мощностью 5 или 7 Вт к двенадцативольтному источнику (например, автомобильному аккумулятору). В зависимости от номинальной мощности в этих лампах установлены соответственно 12 или 16 светодиодов. Такая лампа может пригодиться для аварийного или автомобильного светильника. Поскольку светодиоды включены на плате последовательно, а изменять схему соединений путем перерезания печатных проводников и установкой проволочных перемычек не хотелось, было решено изготовить преобразователь, повышающий напряжение аккумулятора до уровня, необходимого для свечения светодиодов с нормальной яркостью (в данном случае соответственно до 35 или 48 В).

Схема простого преобразователя, собранного из широко распространенных и недорогих деталей, представлена на рис. 3. На триггере Шмитта DD1.1 по типовой схеме построен задающий генератор, работающий на частоте около 25 кГц. Включенные параллельно элементы DD1.2-DD1.6 инвертируют сигнал генератора и увеличивают его нагрузочную способность, обеспечивая быструю зарядку и разрядку емкости полевого транзистора VT2. Питается микросхема от источника питания лампы через линейный стабилизатор напряжения DA1, включенный по типовой схеме. Датчиком тока является резистор R5.

Преобразователь напряжения для светодиодной лампы
Рис. 3. Схема простого преобразователя

Работает цепь стабилизации следующим образом. Если ток через светодиоды становится больше требуемого, транзистор VT1 открывается, шунтируя резистором R1 вход триггера Шмитта DD1.1. При этом длительность импульсов управления, подаваемых на затвор полевого транзистора VT2, уменьшается, а длительность пауз между ними, наоборот, увеличивается. В результате ток через светодиоды уменьшается. Стабилизация тока осуществляется в интервале значений входного напряжения от 9 до 15 В, что для аккумуляторного и автомобильного светильника вполне достаточно. Резистор R3 служит для разрядки конденсатора С4 после выключения преобразователя (без него в течение длительного времени после выключения питания наблюдалось бы слабое свечение светодиодов).

Все детали устройства размещены на печатной плате (рис. 4), изготовленной из фольгированного с одной стороны стеклотекстолита. Транзистор VT2 в теплоотводе не нуждается, но если при эксплуатации его корпус будет заметно нагреваться, можно в дополнение к используемой в качестве теплоотвода контактной площадке на плате, к которой припаян вывод его стока, снабдить его небольшим П-образным теплоотводом, изготовленным из расплющенного отрезка медного провода сечением 2,5 мм2 и длиной 20 мм. Припаять его можно как к указанной площадке на плате (рядом с транзистором), так и к самому теплоотводящему фланцу транзистора. Внешний вид готового узла показан на рис. 5. Для светодиодной панели изготовлен дополнительный теплоотвод из листового алюминиевого сплава, его внешний вид также показан на этом рисунке.

Преобразователь напряжения для светодиодной лампы
Рис. 4. Печатая плата и детали на ней

Преобразователь напряжения для светодиодной лампы
Рис. 5. Внешний вид готового узла

Несколько слов о деталях. Кроме указанного на схеме, в качестве VT1 можно применить любой маломощный транзистор структуры n-p-n для поверхностного монтажа. Полевой транзистор (VT2) - любой с током стока не менее 2 А и напряжением сток-исток не ниже 80 В, рассчитанный на управление логическими уровнями. Возможная замена микросхемы 74НСТ14 (DD1) - из серии 74НС14 или 74АС14. Вместо диода RGP10J (VD1) можно применить 1N4007, однако он будет заметно нагреваться и снизится КПД. Практически без нагрева работают диоды серии КД226. Дроссель L1 - промышленного изготовления в цилиндрическом корпусе, тип его неизвестен, а внешний вид показан на рис. 5 (черный цилиндр в левом нижнем углу платы).

Если не удастся найти интегральный стабилизатор на 5 В исполнения SMD, в цепь питания микросхемы DD1 можно встроить параметрический стабилизатор на стабилитроне. Разместить его и балластный резистор сопротивлением 1 кОм можно на посадочном месте микросхемы.

Налаживания устройство, собранное из исправных деталей, практически не требует. При первом включении преобразователь желательно питать от лабораторного блока с регулируемым выходным напряжением, постепенно повышая его, начиная с 5 В. Если светодиоды не светят, следует проверить полярность их подключения, исправность деталей.

При использовании вместо указанной на схеме (DD1) заменяющих микросхем, возможно, потребуется подбор конденсатора С1 или дросселя L1 по максимальному КПД. Возможно, потребуется подбор резистора R5 до получения тока через светодиоды, равного 100 мА. Если нужного резистора среди имеющихся в наличии не найдется, можно установить R5 заведомо несколько большего сопротивления и подобрать включенный параллельно ему дополнительный резистор R5' (изображен на схеме штриховыми линиями), место для него на плате предусмотрено.

Далее следует проверить интервал значений входного напряжения, при которых осуществляется стабилизация тока через светодиоды. Можно попробовать повысить КПД преобразователя, подбирая индуктивность дросселя L1. При налаживании следует помнить, что обрыв цепи светодиодов может привести к пробою полевого транзистора, поэтому необходимо быть очень внимательным.

В завершение плату преобразователя следует покрыть двумя слоями лака ХВ-784, это защитит его от влаги. При эксплуатации такого светильника следует помнить, что при подключении его к источнику питания следует соблюдать полярность.

Автор: Е. Герасимов

Смотрите другие статьи раздела Преобразователи напряжения, выпрямители, инверторы.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Алкоголь может привести к слобоумию 29.11.2025

Проблема влияния алкоголя на стареющий мозг давно вызывает интерес как у врачей, так и у исследователей когнитивного старения. В последние годы стало очевидно, что границы "безопасного" употребления спиртного размываются, и новое крупное исследование, проведенное международной группой ученых, вновь указывает на это. Работы Оксфордского университета, выполненные совместно с исследователями из Йельского и Кембриджского университетов, показывают: даже небольшие дозы алкоголя способны ускорять когнитивный спад. Команда проанализировала данные более чем 500 тысяч участников из британского биобанка и американской Программы миллионов ветеранов. Дополнительно был выполнен метаанализ сорока пяти исследований, в общей сложности включавших сведения о 2,4 миллиона человек. Такой масштаб позволил оценить не только прямую связь между употреблением спиртного и развитием деменции, но и влияние генетической предрасположенности. Один из наиболее тревожных результатов касается людей с повышенным ге ...>>

Искусственный мозговой матрикс 29.11.2025

Биоинженерия стремительно выходит за пределы традиционной работы с клетками и биоматериалами. Ученые пытаются не просто выращивать ткани, но и воссоздавать механизмы, управляющие жизнью клеток в реальном организме. Одним из наиболее амбициозных направлений стала разработка искусственных матриксов, которые могли бы подменить природную среду и дать исследователям возможность изучать работу мозга без участия биологических компонентов. На этом фоне работа специалистов Калифорнийского университета в Риверсайде представляет собой особенно заметный шаг вперед. В центре их исследования - платформа BIPORES, созданная полностью из синтетических веществ. Цель проекта заключалась в попытке смоделировать сложную, многослойную структуру внеклеточного матрикса, который в настоящем мозге обеспечивает питание, связь и организацию нервных клеток. При этом разработчики сознательно отказались от каких-либо белков, традиционно необходимых для прикрепления клеток, таких как ламинин или фибрин. Это решени ...>>

Ранняя Вселенная не была ледяной 28.11.2025

Понимание того, как формировались первые структуры во Вселенной, требует взгляда в эпохи, в которых не существовало ни звезд, ни галактик, ни привычных нам источников света. Научные группы по всему миру пытаются восстановить картину тех времен при помощи слабейших радиосигналов, оставшихся от водорода, который наполнял космос вскоре после Большого взрыва. Новые результаты, полученные на радиотелескопе Murchison Widefield Array в Австралии, неожиданным образом меняют представление об этих ранних этапах. Сразу после Большого взрыва, произошедшего около 13,8 миллиарда лет назад, пространство стремительно расширялось и остывало. Через несколько сотен тысяч лет образовался нейтральный водород, и началась так называемая эпоха тьмы, когда Вселенная была лишена источников излучения. Лишь значительно позже гравитация собрала газ в плотные области, где зародились первые звезды и ранние черные дыры, а их интенсивное излучение привело к реионизации водорода и окончательному появлению света. ...>>

Случайная новость из Архива

Разработан новый способ расщепления воды 28.06.2023

Водород является перспективным источником энергии будущего, при условии, что его производство будет экологически безопасным. Кроме того, водород играет важную роль в производстве активных ингредиентов и других значимых веществ. Однако разделение молекул воды (H2O) на газообразный водород (H2) и кислород является сложной задачей для химиков, так как молекулы воды очень стабильны. Для успешного расщепления воды необходимо активировать ее при помощи катализатора, что упрощает реакцию.

Команда исследователей под руководством профессора Армидо Штудера из Института органической химии Мюнстерского университета (Германия) разработала фотокаталитический процесс, в котором активация воды осуществляется через триарилфосфины, а не через комплексы переходных металлов, как это делается в большинстве других процессов.

Этот новаторский подход, опубликованный в журнале Nature, открывает двери в активное исследование радикальной химии. Радикалы являются высокоактивными промежуточными продуктами реакций. Команда удачно использует специальный промежуточный продукт - катион-радикал фосфин-воды - в качестве активированной формы воды, из которой атомы водорода могут быть легко отщеплены и переданы на другие соединения. Реакцию контролирует световая энергия.

"Наша система предоставляет идеальную платформу для исследования ранее неизученных химических процессов, где атом водорода выступает в качестве реагента в синтезе", - говорит профессор Штудер.

Доктор Кристиан Мюк-Лихтенфельд, который провел теоретический анализ активированной воды, отмечает: "Водородно-кислородная связь в этом промежуточном продукте является чрезвычайно слабой, что позволяет передачу атома водорода в различные соединения".

Доктор Цзинцзин Чжан, ответственный за экспериментальные исследования, добавляет: "Атомы водорода, активированные водой, могут быть перенесены в алкены и арены при мягких условиях, в так называемых реакциях гидрирования". Реакции гидрирования имеют огромное значение в фармацевтической промышленности, агрохимии и материаловедении.

Этот новый метод расщепления воды, разработанный командой исследователей, представляет собой значимый прогресс в области использования водорода как возобновляемого источника энергии и важного компонента в химической промышленности. Он открывает перспективы для создания более эффективных и экологически безопасных процессов получения водорода и других соединений из воды, способствуя развитию более устойчивой и энергоэффективной технологии.

Другие интересные новости:

▪ Карманные накопители LaCie Mobile SSD Secure и Portable SSD 2 Тбайт

▪ Новая линейка датчиков тока

▪ Пиво на орбите

▪ Баня у индейцев майя

▪ Первый коммерческий чипсет стандарта 5G 3GPP от Huawei

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Энциклопедия радиоэлектроники и электротехники. Подборка статей

▪ статья Факторы риска наркотизации подростков. Основы безопасной жизнедеятельности

▪ статья От кого вели свою генеалогию русские князья (и цари) Рюриковичи? Подробный ответ

▪ статья Функциональный состав телевизоров Elektra. Справочник

▪ статья Настройка и согласование антенно-фидерных устройств. Энциклопедия радиоэлектроники и электротехники

▪ статья Дискретно-пропорциональное управление. Энциклопедия радиоэлектроники и электротехники

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:





Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2025