Menu English Ukrainian Russian Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Индикатор процесса зарядки в ЗУ на базе компьютерного БП. Энциклопедия радиоэлектроники и электротехники

Бесплатная техническая библиотека

Энциклопедия радиоэлектроники и электротехники / Зарядные устройства, аккумуляторы, гальванические элементы

Комментарии к статье Комментарии к статье

Индикатор позволяет отслеживать все стадии зарядки автомобильной аккумуляторной батареи. Информация отображается четырьмя светодиодами различного цвета свечения.

В статьях В. Андрюшкевича [1] и [2] достаточно просто и понятно была изложена методика переделки компьютерных блоков питания (БП) в зарядное устройство (ЗУ). Но индикатор процесса зарядки, на мой взгляд, имеет некоторые недостатки. В предлагаемом индикаторе, схема которого основана на объединении соответствующих узлов из [1] и [2] и приведена на рис. 1, они устранены. Узел индикации достижения максимального напряжения зарядки выполнен на ОУ DA1.2. За счет большого коэффициента усиления он работает практически как компаратор.

Пороговое напряжение включения - 14,7 В, его устанавливают подстроечным резистором R4. Образцовое напряжение +5 В взято непосредственно с вывода 14 (UREF) микросхемы TL494CN БП. По достижении на выходных клеммах ЗУ максимального напряжения включается светодиод HL1 (зеленого цвета) и светит до выключения ЗУ, сигнализируя о том, что напряжение зарядки достигло максимального значения, и идет процесс снижения зарядного тока.

Индикатор процесса зарядки в ЗУ на базе компьютерного БП
Рис. 1. Схема предлагаемого индикатора

Схема узлов на ОУ DA1. 1 и компараторе DA2 аналогична приведенной на рис. 2 в [2]. Там же приведена методика их налаживания. Номиналы резисторов R38, R39 [2] уменьшены для снижения наводок от преобразователей напряжений БП, а питание на индикатор подано непосредственно с выхода ЗУ. Это обеспечивает автоматическое гашение всех светодиодов HL1-HL4 при наличии КЗ на выходе.

Индикатор процесса зарядки в ЗУ на базе компьютерного БП
Рис. 2. Печатная плата и элементы на ней

В начале процесса зарядки при номинальном токе, который у меня установлен равным 6 А, горит светодиод HL2 красного цвета свечения. При достижении максимального напряжения зарядки загорается светодиод HL1. При снижении тока зарядки до 3...4 А (устанавливают подстроечным резистором R3) гаснет светодиод HL2 и включается HL3 желтого цвета свечения. Когда ток зарядки станет менее 0,5...1 А (устанавливают подстроечным резистором R10), HL3 погаснет и включится мигающий светодиод HL4 зеленого цвета свечения, свидетельствующий об окончании зарядки. Такой алгоритм индикации дает визуальный контроль всех ее стадий.

Само ЗУ было собрано на базе устаревшего, но когда-то довольно распространенного компьютерного БП модели PM-230W [3] фирмы КМЕ. Конструкция печатной платы индикатора адаптирована под этот и подобные БП. Однако ничто не мешает устанавливать ее на другие БП. Просто подключение индикатора к БП придется выполнить пятью дополнительными отрезками гибких проводов в изоляции. На печатной плате индикатора эти связи разведены для крепления пайкой на штатный девятиконтактный угловой соединитель, установленный на основной плате БП указанной модели. До доработки на нем крепился модуль блока запуска по сигналу "Power On" [3].

Все элементы, кроме светодиодов HL1-HL4, размещены на печатной плате, чертеж которой и расположение на ней элементов показаны на рис. 2. Светодиоды закреплены в отверстиях на передней стенке корпуса ЗУ При переделке БП, конечно, все его лишние элементы демонтируют. Микросхемы LM358N и LM393N часто применяются в узле запуска. После демонтажа их можно применить в индикаторе.

Применены постоянные резисторы С2-23, МЛТ, подстроечные - из серий SH-625MC, PV-32, CA9H2.5, 3362S. Если переделке подлежит БП серии PM-230, плату узла запуска выпаивают из девятиконтактного штыревого соединителя, а на ее место в освободившиеся штыри устанавливают плату индикатора и пропаивают контактные площадки. Контактные площадки под выводы 7 и 8, 9 на плате БП соединяют короткими проводами соответственно с датчиком тока (R24 на рис. 1 в [1]) и линией +13,9 В. Если цепь плавного (медленного) пуска установлена на основной плате, как, например, R5C11 в [1], то элементы индикатора R12 и C4 не устанавливают. ЗУ со снятой крышкой и встроенным индикатором показано на рис. 3.

Индикатор процесса зарядки в ЗУ на базе компьютерного БП
Рис. 3. ЗУ со снятой крышкой и встроенным индикатором

Чертежи печатной платы в формате Sprint LayOut 5.0 и схема зарядного устройства на базе БП PM-230W в формате GIF можно скачать с ftp://ftp.radio.ru/pub/2016/11/zar.zip.

Литература

  1. Андрюшкевич В. Переделка компьютерного блока питания в лабораторный и зарядное устройство. - Радио, 2012, № 3, с. 22-24.
  2. Андрюшкевич В. Переделка компьютерного блока питания в зарядное устройство. - Радио, 2013, № 9, с. 26, 27.
  3. PM-230W. - URL: electro-tech.narod.ru/schematics/power/comp/atx/kme_pm-230.gif.

Автор: С. Глибин

Смотрите другие статьи раздела Зарядные устройства, аккумуляторы, гальванические элементы.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Использование Apple Vision Pro во время операций 16.03.2024

Медицинская команда больницы Кромвеля в Лондоне впервые применила Apple Vision Pro в ходе двух операций на позвоночнике. Это событие подтверждает потенциал гарнитуры в качестве медицинского инструмента, изменяющего подход к хирургической практике. Хотя сами врачи не использовали Vision Pro, операционная медсестра работала с виртуальной реальностью, используя очки во время подготовки и выполнения процедур. Гарнитура позволила просматривать виртуальные экраны в операционной, выбирать инструменты и следить за ходом операции. Программное обеспечение, разработанное компанией eXeX, специализирующейся на создании приложений на основе искусственного интеллекта для хирургии, существенно улучшило процесс оказания медицинской помощи пациентам. Использование Apple Vision Pro открывает новые возможности для разработки приложений в сфере здравоохранения, таких как клиническое образование, планирование операций, обучение и медицинская визуализация. Внедрение Apple Vision Pro в медицинскую пр ...>>

Хранение углерода в Северное море 16.03.2024

Министр энергетики Норвегии Терье Осланд объявил о запуске проекта Longship, нацеленного на создание центрального хранилища углекислого газа в Северном море. Этот амбициозный проект оценивается в $2,6 млрд и направлен на применение технологии CCS (углеродного захвата и хранения) для смягчения воздействия климатических изменений. Норвегия уже имеет опыт в области CCS благодаря успешным проектам Sleipner и Snohvit, и сейчас стремится увеличить объем углерода, запечатываемого под морским дном. План Longship предусматривает создание мощности по захвату и хранению 1,5 млн. тонн углерода ежегодно в течение 25 лет. Несмотря на позитивные перспективы, существуют опасения по поводу долгосрочных последствий такого хранения. Однако сторонники проекта утверждают, что морское хранение углерода имеет ряд преимуществ, включая минимальное воздействие на окружающую среду. Проект Longship осуществляется при участии компаний Equinor, Shell и TotalEnergies через совместное предприятие Northern Li ...>>

Выращены мини-органы из амниотической жидкости человека 15.03.2024

Международная команда ученых под руководством профессора Фань Сюлиня из Университета Чжэцзян разработала уникальный способ выращивания мини-органов из клеток, обнаруженных в амниотической жидкости человека. Этот значительный прорыв в медицине может привести к улучшению диагностики и лечения врожденных заболеваний. Органоиды, представляющие собой трехмерные клеточные структуры, имитирующие органы в меньшем масштабе, были выращены из клеток легких, почек и тонкого кишечника, найденных в амниотической жидкости. Этот метод открывает новые возможности для изучения различных состояний плода и может стать ключом к ранней диагностике и лечению врожденных дефектов. Хотя пока не проводились попытки использования этого метода в лечении, ученые надеются, что их исследования в будущем помогут бороться с серьезными врожденными заболеваниями, которые затрагивают миллионы новорожденных ежегодно. Этот прорыв может изменить практику медицинских вмешательств, позволяя диагностировать и лечить врожд ...>>

Случайная новость из Архива

Нейроинтерфейс для управления работами силой мысли 08.04.2023

Австралийские ученые разработали неинвазивные биосенсоры, позволяющие людям управлять разными устройствами с помощью мыслей.

Инженеры из Технологического Сиднеевского университета представили усовершенствованный интерфейс мозг-компьютер. Посредством графеновых датчиков исследователи достигли высокой проводимости, простоты в использовании и надежности работы устройств. Технологию можно использовать для управления работами, протезами, инвалидными колясками и машинами.

Разработчики использовали графеновый материал в сочетании с кремнием для создания нательных жестких датчиков. Этот подход решил проблемы коррозии, долговечности и сопротивления контакту с кожей, препятствовавшим повседневному использованию существующих технологий, говорят инженеры.

Датчики с шестигранным графеновым рисунком располагаются на задней части головы, чтобы обнаруживать волны от зрительной коры мозга. Контакты устойчивы к серьезным условиям, поэтому их можно использовать в экстремальных условиях.

Управление устройствами осуществляется с помощью специальной дополненной линзы реальности, установленной перед взглядом пользователя. На экране отображаются белые мерцающие квадраты. Когда оператор концентрируется на определенном квадрате, его мозговые волны улавливаются биосенсором, а декодер переводит сигнал в команды.

Наша технология может выдавать не менее девяти команд за две секунды. Это означает, что у нас есть девять разных типов команд, и оператор может выбрать одну из этих девяти в течение этого периода времени, - отметил Чин-Тенг Лин, профессор Технологического университета Сиднея и соавтор разработки.

Исследователи продемонстрировали работу устройства для управления четвероногим роботом Ghost Robotics. Эксперимент показал, что обученный оператор может управлять роботом с точностью до 94% без помощи рук. Инженеры считают, что разработка найдет применение в производстве, аэрокосмической промышленности и здравоохранении.

Другие интересные новости:

▪ От простуды помогает мытье рук

▪ Сверхгидрофобный материал

▪ Современная ветроэнергетика Европы

▪ Уровень углерода в океане неравномерен

▪ Роботы доят коров

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Микроконтроллеры. Подборка статей

▪ статья Джон Гей. Знаменитые афоризмы

▪ статья Куда кузнечики откладывают свои яйца? Подробный ответ

▪ статья Менеджер по работе с операторами. Должностная инструкция

▪ статья Лазерно-утюговая технология изготовления печатный платы. Энциклопедия радиоэлектроники и электротехники

▪ статья Трансформаторная развязка источника сигнала и входа усилителя. Энциклопедия радиоэлектроники и электротехники

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:





All languages of this page

Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2024