Menu Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Устройство токовой защиты источника питания. Энциклопедия радиоэлектроники и электротехники

Бесплатная техническая библиотека

Энциклопедия радиоэлектроники и электротехники / Блоки питания

Комментарии к статье Комментарии к статье

Описанный в этой статье узел токовой защиты разработан для источника питания, описание которого можно найти в [1], работающего совместно с измерителем выходного напряжения и тока нагрузки [2]. Узел отличается от других подобных устройств тем, что, кроме выполнения функций защиты, позволяет устанавливать и контролировать порог срабатывания по измерителю тока нагрузки блока питания, не нагружая его.

В большинстве устройств токовой защиты порог срабатывания изменяют переменным резистором с отградуированной шкалой либо переключателем с набором резисторов. В первом случае сложно установить требуемый порог точно, во втором - число его возможных значений ограничено числом положений переключателя. Кроме того, его контакты должны выдерживать максимальный ток нагрузки, а такие переключатели довольно дороги.

Представленное в этой статье защитное устройство позволяет устанавливать порог срабатывания защиты во всем интервале работы измерителя тока нагрузки с точностью, обеспечиваемой этим измерителем без всяких градуировок и подборки резисторов.

Защитное устройство работает в двух режимах - ограничения тока нагрузки и выключения выходного напряжения при превышении порога (триггерный режим). Его схема представлена на рис. 1. Оно построено на ОУ DA1, включенном по схеме неинвертирующего усилителя.

Устройство токовой защиты источника питания
Рис. 1. Схема защитного устройства (нажмите для увеличения)

На инвертирующий вход ОУ поступает образцовое напряжение с резистивного делителя R4-R6. В качестве входного сигнала устройства защиты использовано напряжение с выхода усилителя узла измерения тока [2]. Пока нагрузки нет, на выходе этого усилителя, а следовательно, и на неинвертирующем входе ОУ DA1 напряжение нулевое. Поскольку напряжение на его инвертирующем входе выше нуля, на выходе этого ОУ напряжение ниже нуля, транзистор VT1 закрыт, а светодиод HL1 выключен.

С появлением тока нагрузки напряжение на неинвертирующем входе ОУ растет. Как только оно превысит образцовое, напряжение на выходе ОУ станет выше нуля и откроет транзистор VT1. Последний, открываясь, шунтирует выход параллельного стабилизатора напряжения DA1 (рис. 5 в [2]). Выходное напряжение источника питания, а с ним и ток нагрузки уменьшаются до тех пор, пока напряжение на неинвертирующем входе ОУ DA1 не сравняется с образцовым. Ток нагрузки будет ограничен на установившемся уровне. Светодиод HL1 сигнализирует о переходе в режим ограничения тока.

Чтобы перейти в триггерный режим, нужно замкнуть контакты кнопочного выключателя SB2. В этом случае при превышении током нагрузки установленного значения откроется транзистор VT2 и на инвертирующий вход ОУ DA1 поступит напряжение - 8 В. На выходе ОУ будет установлено напряжение около +6 В, транзистор VT1 полностью откроется, выходное напряжение источника станет близким к нулю. Светодиод в этом режиме сигнализирует о срабатывании защиты. Чтобы вернуть источник в рабочий режим, достаточно на короткое время перевести защиту в режим ограничения тока. При указанных на схеме номиналах резисторов R4-R6 порог ее срабатывания можно регулировать от 20 мА до 2 А. Чтобы изменить этот интервал, подбирают упомянутые резисторы.

Цепь R11C7 служит для предотвращения самовозбуждения ОУ. Хотя полностью устранить его, скорее всего, не удастся, цепь R11C7 значительно уменьшает амплитуду высокочастотного переменного напряжения на выходе ОУ. Чтобы генерация не влияла на работу остальных узлов, сигнал с выхода ОУ подан на базу транзистора VT1 через фильтр R2C1. Резистор R1 в цепи эмиттера VT1 создает местную отрицательную обратную связь по току.

Устранить самовозбуждение поможет и шунтирование участка коллектор-эмиттер транзистора VT1 (рис. 5 в [1]) конденсатором емкостью 4,7 мкФ на напряжение 63 В. О том, что самовозбуждения нет, косвенно свидетельствует отсутствие акустического шума источника. А самовозбуждение сопровождают характерные звуки, хорошо воспринимаемые на слух. В любом случае следует проконтролировать осциллографом размах пульсаций выходного напряжения в режиме ограничения тока и, подбирая корректирующие цепи, минимизировать его. Возможно, потребуется стабилизировать напряжения питания ОУ.

Следует отметить, что применение цепи R11C7 и резистора R1 требуется далеко не всегда. В одном из экземпляров устройства защиты их вообще не пришлось устанавливать, хотя амплитуда пульсаций частотой более 200 кГц на выходе ОУ DA1 достигала 100 мВ. Критерием служит амплитуда пульсаций на выходе источника. Если при его работе в режиме ограничения тока она не превышает 10...15 мВ, работу узла защиты можно считать удовлетворительной, поскольку такой режим в большинстве случаев считается аварийным.

Цепь R11C7 и резистор R1 можно не устанавливать и в том случае, если работа источника в режиме ограничения тока не предполагается, а требуется только триггерный режим. В этом случае коллектор транзистора VT2 следует соединить с выводом 2 DA1 напрямую, а выключатель SB2 заменить переключателем, включив его в разрыв провода, соединяющего резистор R9 с выводом 3 DA1 по схеме, изображенной на рис. 2. При выключенной триггерной защите выходной ток источника [1] будет ограничен на уровне около 2,5 А.

Устройство токовой защиты источника питания
Рис. 2. Схеме соединения резистора R9 с выводом 3 DA1

Поскольку при токе нагрузки, равном пороговому, напряжения на входах ОУ равны, чтобы определить порог срабатывания защиты, достаточно измерить напряжение на движке переменного резистора R5 относительно минусового провода нагрузки. Чтобы сделать это, в измерителе [2] следует разорвать цепь между выходом ОУ DA1 и резистором R10 и вывести провода на контакты переключателя SB1. Измерять ток защиты можно в любом режиме работы.

Питают устройство защиты от преобразователя напряжения, встроенного в измеритель [2]. Его мощности для этого достаточно. Конечно, лучший вариант - использовать вместо преобразователя дополнительные вторичные обмотки трансформатора питания с соответствующими выпрямителями и стабилизаторами.

Блок питания, построенный из узлов, описанных в [1] и [2], с предлагаемым устройством защиты не лишен недостатков. Во-первых, при его включении в сеть на выходе возникает импульс напряжения, амплитуда которого не превышает установленного выходного напряжения. Это следствие питания узла защиты от преобразователя напряжения. Он запускается позже источника питания, поэтому переходные процессы в узле защиты происходят с задержкой. В момент запуска преобразователя на выходе ОУ DA1 кратковременно появляется напряжение +6 В и транзистор VT1 открывается, что и вызывает появление импульса.

Другой недостаток обусловлен той же причиной, что и первый, но проявляется при включенном режиме триггерной защиты. При подаче питания появляется импульс напряжения, амплитуда которого не превышает установленного выходного напряжения, а затем источник выключается. Если питать узел защиты и измеритель от дополнительных обмоток сетевого трансформатора, эти эффекты проявляются в меньшей степени.

Чтобы устранить влияние этих недостатков, можно просто не включать триггерный режим и не подключать нагрузку, пока выходное напряжение блока не установится. Но полностью избавиться от них поможет цепь, схема которой показана на рис. 3. В момент включения блока в сеть конденсатор С9 разряжен, через диод VD1 на неинвертирующий вход ОУ DA1 поступает отрицательное напряжение, поэтому импульс на его выходе не появляется. По мере зарядки конденсатора напряжение на нем плавно нарастает. Когда оно станет больше, чем на входе ОУ, диод VD1 будет закрыт, а конденсатор С9 через резистор R12 зарядится до суммарного напряжения на выходах преобразователя (16 В) и перестанет влиять на дальнейшую работу устройства. Диод VD2 служит для ускорения разрядки конденсатора С9 при выключении питания. Постоянную времени цепи С9R12 следует подобрать минимальной, при которой триггерная защита не срабатывает в момент включения источника в сеть.

Устройство токовой защиты источника питания
Рис. 3. Схема цепи

Печатная плата для узла защиты не разрабатывалась. При оснащении блока питания [1] этим узлом следует вместо переменного резистора R11' (рис. 3 в [1]) установить постоянный номиналом 3,6 кОм, а резистор R11'' исключить.

В блоке защиты применены резисторы МЛТ и импортные оксидные конденсаторы. Переменный резистор - СП3-40. Транзисторы КТ3102Е можно заменить на SS9014, а вместо ОУ КР140УД708 применить импортные аналоги или другие отечественные ОУ, например КР1408УД1А. Следует отдавать предпочтение ОУ с низкой скоростью нарастания выходного напряжения.

Литература

  1. Герасимов Е. Лабораторный блок питания из БП матричного принтера. - Радио, 2016, №7, c. 24-26.
  2. Герасимов Е. Измеритель напряжения и тока. - Радио, 2016, № 5 c. 29-31.

Автор: Е. Герасимов

Смотрите другие статьи раздела Блоки питания.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Хорошо управляемые луга могут компенсировать выбросы от скота 15.02.2026

Животноводство, особенно разведение крупного рогатого скота, часто обвиняют в значительном вкладе в глобальное потепление из-за мощного парникового газа - метана, который выделяется при пищеварении у жвачных животных. Это вызывает острые политические споры и призывы к сокращению потребления мяса. Однако ученые напоминают, что полная картина климатического воздействия отрасли не ограничивается только выбросами от животных: огромную роль играет окружающая экосистема - пастбища, почва и растительность, которые способны активно поглощать углекислый газ из атмосферы. Исследователи из Университета Небраски-Линкольна решили глубже изучить этот баланс. Группа под руководством профессора Галена Эриксона сосредоточилась на том, как правильно организованные пастбища накапливают углерод в растениях и грунте благодаря естественным процессам, стимулируемым выпасом скота. Ученые подчеркивают, что при достаточном уровне осадков и грамотном управлении такие луга превращаются в мощные природные погло ...>>

NASA тестирует инновационную технологию крыла 15.02.2026

Коммерческая авиация ежегодно расходует колоссальные объемы керосина, что сказывается не только на бюджете авиакомпаний, но и на состоянии окружающей среды. В 2024 году глобальные затраты на авиационное топливо достигли 291 миллиарда долларов, и эта сумма продолжает расти. Чтобы справиться с этими вызовами, NASA активно работает над технологиями, способными заметно повысить аэродинамическую эффективность самолетов. Одним из самых перспективных направлений стало создание специальной конструкции крыла, которая максимизирует естественный ламинарный поток воздуха и минимизирует сопротивление. В январе 2026 года специалисты NASA Armstrong Flight Research Center успешно провели важный этап наземных испытаний концепции Crossflow Attenuated Natural Laminar Flow (CATNLF). Для эксперимента под фюзеляж исследовательского самолета F-15B закрепили вертикально ориентированную масштабную модель высотой около 0,9 м (3 фута), напоминающую узкий киль. Такая компоновка позволила подвергнуть прототип р ...>>

Забота о внуках очень полезна для здоровья мозга 14.02.2026

Общение между поколениями приносит радость всей семье, но мало кто задумывается, насколько активно бабушки и дедушки, заботящиеся о внуках, поддерживают свою умственную форму. Регулярное взаимодействие с детьми стимулирует мозг пожилых людей, помогая сохранять память, скорость мышления и общую когнитивную активность. Новые научные данные подтверждают, что такая добровольная помощь не только важна для общества, но и может замедлять возрастные изменения в мозге. Исследователи из Тилбургского университета в Нидерландах провели анализ, чтобы понять, приносит ли уход за внуками реальную пользу здоровью пожилых людей. Ведущий автор работы Флавия Черечес отметила, что многие бабушки и дедушки регулярно присматривают за детьми, и оставался открытым вопрос, насколько это положительно сказывается на их собственном благополучии, особенно в плане когнитивных функций. Ученые поставили цель выяснить, способен ли регулярный уход за внуками замедлить снижение памяти и других умственных способ ...>>

Случайная новость из Архива

Контактные линзы дополненной реальности 12.04.2022

Калифорнийская компания Mojo Vision создала новый опытный образец контактных линз с технологией дополненной реальности. Переработав электронику и изменив схему питания, инженеры подготовили устройство к испытаниям. Также было разработано первое программное обеспечение и пользовательский интерфейс.

Первый опытный образец компания представила два года назад, когда инженерам удалось создать дисплей, систему насыщения кислородом, микрочип и инструменты управления энергией, а также разработали алгоритмы отслеживания движения глаз. Уже тогда линзы выглядели как обычные косметические контактные линзы, меняющие цвет глаз, хотя скрывали в себе целый компьютер с крошечными дисплеями, батареями и прочим.

С тех пор Mojo Vision вкладывала в разработку программного обеспечения для линз, создала базовый код операционной системы и первые компоненты пользовательского интерфейса. Это ПО открывает возможность дальнейшего развития и тестирования различных сценариев использования линз потребителями и предприятиями.

Электронная начинка линз расположена на жестком газопроницаемом пластике, не похожем на материал, из которого изготавливают обычные контактные линзы. Среди миниатюрных устройств - акселерометры, гироскопы, магнитометр, а также радиосвязь. Кроме того, имеется микрочип для управления питанием, датчик изображений и микропроцессор.

Одно из главных отличий нового прототипа от того, который был представлен в 2020 - отказ от передачи энергии по беспроводному соединению в пользу батареи, поскольку индуктивная связь не обеспечивала бесперебойного питания.

Изначально компания определила своей целевой группой людей со слабым зрением, которым линзы помогут лучше видеть дорожные знаки и прочую необходимую информацию. А также спортсмены, которым важно получать актуальную информацию, не отвлекаясь от забега или матча. Но пока разработчики не готовы говорить о Mojo Lens как о продукте - в ближайшие годы устройство ждет оптимизация, отладка приложений и тестирование, которое покажет, кем будут первые клиенты компании.

Другие интересные новости:

▪ Геномы дешевеют

▪ Нашу галактику прошьет облако с магнитным щитом

▪ Защищенное устройство Fujitsu Stylistic Q736

▪ Сверхнизкие звуки заставляют людей танцевать

▪ Пиво на орбите

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Чудеса природы. Подборка статей

▪ статья Вкусивши сладкого, не захочешь горького. Крылатое выражение

▪ статья Какое достоинство имеет оранжевая долларовая купюра? Подробный ответ

▪ статья Шерошница. Легенды, выращивание, способы применения

▪ статья Зеркала. Простые рецепты и советы

▪ статья Схема дистанционной установки частоты трансивера. Энциклопедия радиоэлектроники и электротехники

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:





Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2026