Menu Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Импульсная диагностика аккумуляторов. Энциклопедия радиоэлектроники и электротехники

Бесплатная техническая библиотека

Энциклопедия радиоэлектроники и электротехники / Зарядные устройства, аккумуляторы, гальванические элементы

Комментарии к статье Комментарии к статье

При длительном хранении и неправильной эксплуатации на пластинах аккумуляторов появляются крупные нерастворимые кристаллы сульфата свинца. Большинство современных зарядных устройств выполнены по простой схеме, в которую входит трансформатор и выпрямитель. Их использование рассчитано на снятие рабочей сульфитации с поверхности пластин аккумулятора, но застарелую крупнокристаллическую сульфитацию они убрать не в состоянии.

Кристаллы сульфата свинца обладают большим сопротивлением, что препятствует прохождению зарядного и разрядного тока. Напряжение на аккумуляторе во время зарядки растет, ток заряда падает, а обильное выделение смеси кислорода и водорода может привести к взрыву. Разработанные импульсные зарядные устройства [1-3] способны во время зарядки перевести сульфат свинца в аморфный свинец с последующим его осаждением на поверхность очищенных от кристаллизации пластин.

Перед зарядкой и восстановлением аккумулятора необходимо провести диагностику его технического состояния, прежде всего, определить внутреннее сопротивление (степень сульфитации). Простейшим прибором диагностики является нагрузочная вилка, состоящая из низкоомного разрядного резистора и вольтметра. Ток разряда, проходя через резистор, снижает напряжение на аккумуляторе. По напряжению холостого хода Е и напряжению под нагрузкой U. зная ток разряда Iр, определяют внутреннее сопротивление аккумулятора RBH:

Rвн=(E-U)/Iр

Сложность выполнения диагностики аккумулятора в том, что требуются дополнительные приборы и проведение арифметических расчетов. Фирменные диагностические приборы с автоматическим определением параметров аккумуляторов (напряжения под нагрузкой, внутреннего сопротивления, емкости) имеют большие габариты из-за применения мощного разрядного сопротивления и релейной схемы подключения нагрузки.

Предлагаемый электронный прибор позволяет производить прямой отсчет внутреннего сопротивления аккумулятора с определением степени сульфитации пластин.

Диагностика аккумулятора при импульсном токе разряда позволяет уменьшить габариты прибора (практически на порядок), облегчить тепловой режим разрядных цепей и ускорить диагностику с минут до секунд. Прямоугольная форма разрядного тока наиболее близка по форме к пусковому току стартерных устройств автомобилей.

В приборе отсутствует сетевое питание, что позволяет проводить измерения степени сульфитации аккумулятора непосредственно на автомобиле. В состав электронной схемы прибора (рис.1) входят:

  • генератор прямоугольных импульсов на аналоговом таймере DA1;
  • ключевой транзистор VT2;
  • усилитель импульсов сульфитации VU1.

Импульсная диагностика аккумуляторов
(нажмите для увеличения)

Характеристики устройства

  • Напряжение аккумулятора......12 В
  • Емкость, А-ч......12-120
  • Время измерения, с......5
  • Импульсный ток измерения, А......10
  • Диагностируемая степень сульфатации, %......30...100
  • Масса устройства, г......240
  • Рабочая температура воздуха......±27°С

Режим работы генератора стабилизирован отрицательной обратной связью с нагрузки ключевого усилителя на вход 5 таймера и схемой компенсации изменения внешней температуры с датчиком R1. Питание устройства стабилизировано электронным стабилизатором DA2.

Генератор прямоугольных импульсов на таймере DA1 позволяет при минимальном количестве дополнительных радиодеталей формировать прямоугольные импульсы с частотой и скважностью, изменяющимися в широких пределах. В состав микросхемы входят два компаратора, входы которых подключены к выводам 6 и 2 DA1. с уровнями переключения 2/3 Uп и 1/3 Uп соответственно. Внутренний триггер таймера позволяет изменять состояние выхода (вывода 3) DA1 в зависимости от уровня напряжения на зарядном конденсаторе С1.

При подаче питания конденсатор С1 заряжается до уровня 2/3 Uп в течение времени, зависящего от номиналов R1 и С1. При достижении этого напряжения внутренний триггер переключается, на выходе 3 появляется низкий уровень, включается внутренний разрядный транзистор, подключенный к выводу 7 DA1. Конденсатор С1 разряжается через резисторы R2 и R3, по достижении уровня 1/3 Uп происходит повторное переключение триггера, на выходе 3 появляется высокий уровень, внутренний транзистор закрывается, и начинается повторный заряд С1, т.е. цикл повторяется. Резистором R2 устанавливается время разряда конденсатора С1. С увеличением сопротивления R2 время разряда увеличивается, а мощность на нагрузке R9 уменьшается. В зарядной цепи конденсатора С1 установлен терморезистор R1. который при пониженной температуре увеличивает время заряда С1 и продолжительность импульса тока в разрядной цепи аккумулятора. Частота генератора снижается, что ведет к повышению напряжения на микроамперметре РА1.

С выхода 3 DA1 прямоугольные импульсы через ограничительный резистор R6 поступают на базу усилителя мощности на транзисторе VT2. Открытый очередным импульсом транзистор VT2 разряжает на короткое время аккумулятор GB1 на резистор R9.

Вход 5 DA1 используется для стабилизации разрядного тока нагрузки. При повышении напряжения на нагрузке R9 оно через установочный резистор R8 и ограничительный R7 поступает на базу транзистора VT1. Снижение напряжения на входе 5 DA1 при открытом транзисторе VT1 позволяет автоматически повысить частоту выходных импульсов таймера, что приводит к уменьшению напряжения на нагрузке. Таким образом осуществляется стабилизация тока. Конденсатор C3 устраняет импульсные помехи на базе VT1, резистор R4 ограничивает ток замыкания по входу 5 DA1 при открытом VT1.

Импульсное напряжение с аккумулятора GB1 через резистор R10 и разделительный конденсатор С4 поступает на вход усилителя на оптопаре (оптроне) VU1. Резистором R11 устанавливается режим усиления оптопары по постоянному току. Нагрузкой оптоусилителя является резистор R13, сигнал с которого через разделительный конденсатор С5 поступает на выпрямитель с удвоением напряжения на диодах VD2, VD3. После выпрямления он воздействует на показания микроамперметра РА1. Резистором R14 осуществляется установка максимальных показаний прибора РА1.

При рабочей сульфитации внутреннее сопротивление аккумулятора не превышает паспортное значение, и импульсное напряжение на клеммах аккумулятора незначительно по амплитуде. При крупнокристаллической сульфитации, когда внутреннее сопротивление аккумулятора превышает рабочее в десятки раз. импульсы разрядного тока создают на клеммах аккумулятора импульсы напряжения, амплитуда которых линейно зависит от степени сульфитации. С повышением амплитуды импульсов увеличивается отклонение стрелки микроамперметра, указывая на рост сульфитации, снижение емкости аккумулятора и его стартового тока. Показания микроамперметра соответствуют максимальной сульфитации в процентах.

Основные элементы устройства размещены на односторонней печатной плате размерами 102x31 мм. чертеж которой показан на рис.2. Устройство выполнено в корпусе БП-1. Регулятор R8 (тип Аб) и микроамперметр РА1 установлены на передней панели прибора.

Импульсная диагностика аккумуляторов

Исходя из значения напряжения под нагрузкой, резистором R14 устанавливается соответствующее значение сульфитации в процентах на шкале прибора РА1 при среднем положении движков резисторов R2, R8 и R11. Показания прибора корректируются резистором R11 в соответствии сданными, приведенными в таблице.

Напряжение аккумулятора под нагрузкой, В Более 11,8 Менее 11,6 Менее 10,8 Менее 10,2
Сульфитация, % Рабочая 40% 60% 100%

Среднее положение движка резистора R8 (тип аккумулятора) примерно соответствует емкости аккумулятора 60 А-ч. нижнее - 120 А-ч, верхнее - 12 А-ч. Возможное несоответствие типа аккумулятора и положения движка R8 из-за разброса элементов схемы корректируется резистором R2 (регулирует длительность паузы между импульсами), что вносит поправку в величину импульсного тока разряда аккумулятора.

Отсчет показаний сульфитации аккумулятора выполняется после кратковременного подключения разъема XT и минусовой шины к аккумулятору по прибору РА1 Предварительно резистор R8 устанавливают в положение, соответствующее проверяемому типу аккумулятора. Пульсирующее свечение контрольного светодиода HL1 указывает на правильную полярность подключения аккумулятора во время тестирования и исправную работу генератора прямоугольных импульсов на DA1.

Литература

  1. В.Коновалов. Измеритель RBH АБ. - Радиомир, 2004. №8, С.14.
  2. В.Коновалов, А.Разгильдеев. Восстановление аккумуляторов. - Радиомир, 2005. №3, С.7.
  3. В.Коновалов. Зарядно-восстановительное устройство для Ni-Cd аккумуляторов. - Радио. 2006. №3. С.53.
  4. Испытатель автомобильных аккумуляторных батарей. - Радио. 2007, №6, С.49.
  5. И.П.Шелестов. Радиолюбителям полезные схемы. Кн.5. - 2003.
  6. В.В.Мукосеев, И.Н.Сидоров. Маркировка и обозначение радиоэлементов - 2001.

Автор: В.Коновалов, г.Иркутск

Смотрите другие статьи раздела Зарядные устройства, аккумуляторы, гальванические элементы.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Впервые преоодолена передача ВИЧ от матери к ребенку 02.01.2026

Проблема вертикальной передачи ВИЧ - от матери к ребенку - остается одной из ключевых задач глобальной медицины. Недавний отчет Всемирной организации здравоохранения (ВОЗ) демонстрирует историческое достижение: Бразилия впервые в своей истории полностью преодолела этот путь передачи вируса. Страна стала 19-й в мире и первой с населением более 100 миллионов человек, которая достигла такого результата. Достижения Бразилии основаны на комплексных медицинских программах, обеспечивающих своевременный доступ к диагностике и терапии для всех слоев населения. ВОЗ официально подтвердило, что уровень передачи ВИЧ от матери к ребенку снизился до менее двух процентов. Более 95% беременных женщин в стране получают регулярный скрининг на ВИЧ и необходимое лечение в рамках стандартного ведения беременности. Изначально программа тестировалась в крупных муниципалитетах и штатах с населением более 100 тысяч человек, а затем была масштабирована на всю страну. Такой подход позволил унифицировать ста ...>>

Нанослой германия увеличивает эффективность солнечных батарей на треть 02.01.2026

Разработка высокоэффективных солнечных батарей остается одной из ключевых задач современной энергетики. Недавнее исследование южнокорейских ученых позволило повысить производительность тонкопленочных солнечных элементов почти на 30%, что открывает новые перспективы для возобновляемых источников энергии, гибкой электроники и сенсорных устройств. Команда исследователей сосредоточилась на элементах на основе моносульфида олова (SnS) - нетоксичного и доступного материала, который идеально подходит для гибких солнечных панелей. До настоящего времени эффективность SnS-устройств оставалась низкой из-за проблем на границе контакта с металлическим электродом. В этой области возникали структурные дефекты, диффузия элементов и электрические потери, что существенно ограничивало возможности таких батарей. "Этот интерфейс был главным барьером для достижения высокой производительности", - отмечает профессор Джейонг Хо из Национального университета Чоннам. Для решения этих проблем ученые предлож ...>>

Электростатическое решение для борьбы с льдом и инеем 01.01.2026

Борьба с льдом и инеем на транспортных средствах и критически важных поверхностях зимой остается сложной и затратной задачей. Ученые из Virginia Tech разработали инновационную технологию, способную разрушать лед и иней без использования тепла или химических реагентов, что открывает новые возможности для безопасной и экологичной зимней эксплуатации транспорта. Исследователи обнаружили, что лед и иней образуют кристаллическую решетку с так называемыми ионными дефектами - заряженными участками, способными перемещаться под воздействием электрического поля. Эти дефекты являются ключом к управлению прочностью льда и его удалением с поверхностей. Когда на замерзшую поверхность подается положительный электрический заряд, отрицательные ионные дефекты притягиваются к источнику поля. Это вызывает разрушение кристаллической решетки льда, в результате чего часть льда буквально "отскакивает" от поверхности. Такой эффект позволяет удалять лед без применения внешнего тепла или химических средств ...>>

Случайная новость из Архива

Хранилища водорода - путь к энергетической безопасности 15.04.2012

По мнению специалистов компании Siemens, огромные хранилища водорода - это единственный способ обеспечить энергетическую безопасность Германии и перейти к масштабному использованию солнечных и ветряных электростанций.

Если Германия хочет реализовать свои амбициозные планы - получать треть электроэнергии из возобновляемых источников к 2020 году и до 80% к 2050 году, ей придется найти способ хранить огромное количество электроэнергии. Иначе будет невозможно компенсировать нестабильный выход энергии из возобновляемых источников, вроде солнечных панелей и ветряков. В компании Siemens считают, что сегодня для этого существует только одна подходящая технология: электролиз воды и производство водородного топлива. Водород можно превращать в электроэнергию на газовых электростанциях, к тому же, им можно заправлять автомобили и даже самолеты.

Сегодня производство водорода неэффективно: во время электролиза и последующего сгорания водорода теряется две трети энергии. Однако для выполнения масштабных планов Германии другого приемлемого способа пока нет, и Siemens предлагает свою концепцию водородной энергетики. В отличие от обычных промышленных электролизеров, которые нуждаются в устойчивом энергоснабжении, новая система Siemens может работать в условиях неустойчивой мощности ветряков и солнечных панелей. Она основана на протонообменной мембране, похожей на ту, что сегодня используется в автомобильных топливных элементах. Электролизер Siemens может работать при перепадах мощности в 2-3 раза и идеально подходит для всплесков мощности ветряков в особо ветреные дни.

Последнее особенно актуально, поскольку из-за недостаточной мощности линий электропередач Германия теряет около 20% энергии, вырабатываемой ветряками. Сейчас хранить эту энергию попросту негде. Самый доступный способ сохранить электричество - это закачивать воду на большую высоту, а потом спускать ее, приводя в движение турбины генераторов. Однако данный метод годится только для горной местности и поэтому в равнинной Германии с его помощью "перекачивают" только около 40 гигаватт-часов. Столько ветряки и солнечные панели могут генерировать за один час ветреного и солнечного дня.

Современные аккумуляторы дороги и громоздки, поэтому они не могут решить проблему хранения гигантского количества энергии, необходимой Германии ночью или в безветренный день.

По расчетам специалистов Siemens, если Германия будет на 85% обеспечиваться энергией из возобновляемых источников, потребуется хранение энергии на уровне 30000 гигаватт-часов. В Siemens утверждают, что их электролизеры смогут превратить эту энергию в водород с эффективностью около 60%. От полученного в итоге количества энергии следует отнять еще 40% на потери во время обратного превращения водорода в электричество. Таким образом будет потеряна только треть "дармовой" энергии ветряков и солнечных панелей. Водород, необходимый для питания электростанций, может храниться в подземных пещерах и транспортироваться по существующим газопроводам или специальным трубам.

Другие интересные новости:

▪ Грибковый экстракт против рака

▪ Очистка воды целлюлозой

▪ Материал будущего, становящийся прочнее при нагрузках

▪ Использование памяти 3D V-NAND позволит создать SSD 10 Тбайт

▪ Нанопинцеты извлекают отдельные молекулы из живой клетки, не разрушая ее

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Конспекты лекций, шпаргалки. Подборка статей

▪ статья Дурак-недотепа. Крылатое выражение

▪ статья Чем страдал Дальтон? Подробный ответ

▪ статья RS-триггер. Радио - начинающим

▪ статья Электронные часы управляют электродвигателем. Энциклопедия радиоэлектроники и электротехники

▪ статья Двойной балансный смеситель SA612A. Энциклопедия радиоэлектроники и электротехники

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:




Комментарии к статье:

Анатолий
А где прописано паспортное значение внутреннего сопротивления АКБ?


Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2025