Menu Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Лабораторный источник питания на интегральных стабилизаторах напряжения, 220/1,25-27 вольт 3 ампера + 0-±24 вольт 0,6 ампер. Энциклопедия радиоэлектроники и электротехники

Бесплатная техническая библиотека

Энциклопедия радиоэлектроники и электротехники / Блоки питания

Комментарии к статье Комментарии к статье

В предлагаемой вниманию читателей статье описан лабораторный блок питания, выполненный на микросхемах - стабилизаторах напряжения. Он содержит два независимых источника: мощный с выходным напряжением от 1,25 до 27 В и максимальным током нагрузки 3 А и относительно маломощный двуполярный с напряжением 0..±24 В и током до 0,6 А.

Лабораторный блок питания (рис. 1) состоит из двух независимых источников А1 и А2, гальванически не связанных друг с другом, и обладает широкими возможностями.

Лабораторный источник питания на интегральных стабилизаторах напряжения

Основные технические характеристики

  • Выходное напряжение блока А1.В......1,25-27
  • Максимальный ток нагрузки (ток ограничения) блока А1, А......3
  • Выходное двуполярное напряжение блока А2, В......0...+24
  • Максимальный ток нагрузки (ток ограничения) блока А2,А......0,6

В устройстве применен общий для обоих источников сетевой трансформатор Т1. Выходное напряжение и ток нагрузки более мощного источника А1 можно контролировать с помощью вольтметра и амперметра, которые выполнены на основе стрелочного прибора М2001. В авторском варианте выходное напряжение источника А2 измеряют два одинаковых цифровых вольтметра, собранных на основе АЦП КР572ПВ2А. Схемы подобных устройств неоднократно публиковались на страницах "Радио", например, в статье [ 1 ], поэтому здесь останавливаться на них подробно не будем.

Блок А1 представляет собой стабилизатор, который описан в [2], выполненный на отечественных элементах и доработанный автором. До работка заключается в возможности ступенчатого регулирования интервалов выходного напряжения с целью уменьшения потерь на регулирующем транзисторе. Этот блок можно использовать для питания различной аппаратуры и при ремонтных работах, а также как зарядное устройство.

Источник питания А1 обеспечивает стабилизированное напряжение на выходе в интервалах 1,25...6,5; 1,25...13 и 1,25...27 В с возможностью его плавной регулировки. Максимальный ток нагрузки (уровень срабатывания защиты по току) может быть установлен в пределах 0,05...3 А. В случае превышения установленного уровня устройство автоматически переходит в режим стабилизации тока, а после устранения перегрузки - возвращается в режим стабилизации напряжения.

Схема блока А1 показана на рис. 2.

Лабораторный источник питания на интегральных стабилизаторах напряжения

Устройство состоит из следующих функциональных частей: мощного выпрямителя VD1-VD4 с фильтром С1-C3; стабилизатора напряжения на микросхеме DA1 и транзисторе VT1; узла защиты по току на ОУ DA2; двух вспомогательных источников стабильного напряжения VD5VD6C4R1 и VT2VD7-VD9 для питания ОУ DA2. Переключателем SA2 устанавливают требуемый интервал регулирования выходного напряжения.

Если ток нагрузки не превышает 50 мА, устройство работает как стабилизатор, включенный по типовой схеме [3]. Когда ток нагрузки превысит это значение, падение напряжения на резисторе R2 открывает транзистор VT1, тем самым ограничивая ток через микросхему DA1 на уровне 50 мА. Регулируют выходное напряжение переменным резистором R8.

Узел защиты по току работает следующим образом. Стабильное выходное напряжение подают на неинвертирующий вход ОУ DA2. На его инвертирующий вход через регулируемый делитель R3R6 поступает сумма выходного напряжения и падения напряжения на токоизмерительном резисторе R4.

ОУ DA2 сравнивает выходное стабилизированное напряжение с напряжением, поступающим с делителя, которое зависит от тока нагрузки. Пока напряжение на неинвертирующем входе больше, чем на инвертирующем, на выходе ОУ устанавливается высокий уровень, близкий к выходному напряжению. Диод VD10 и светодиод HL1 закрыты. Устройство работает в режиме стабилизатора напряжения. Если ток нагрузки увеличивается, падение напряжения на токоизмерительном резисторе R4 возрастает и в некоторый момент напряжения на входах ОУ становятся равными. После этого дальнейшего увеличения тока нагрузки не происходит, поскольку выход ОУ шунтирует цепь регулировки стабилизатора DA1 через открытые диод VD10 и светодиод HL1. Резистор R5 ограничивает ток через светодиод HL1 и ОУ на допустимом уровне. При этом падение напряжения на резисторе R4 поддерживается постоянным за счет изменения выходного напряжения на нагрузке. Устройство переходит в режим стабилизации тока, о чем свидетельствует включенный светодиод HL1. Уровень ограничения тока нагрузки устанавливают переменным резистором R3.

Для нормальной работы устройства необходимо, чтобы минимальная разность напряжения на входе (плюсовой вывод конденсатора C3) и выходе стабилизатора (вывод 8 микросхемы DA1) была не меньше суммы минимального падения напряжения на микросхеме DA1 и напряжения открывания эмиттерного перехода транзистора VT1 (в нашем случае - 3,8 В).

Схема двуполярного стабилизатора напряжения А2 показана на рис. 3.

Лабораторный источник питания на интегральных стабилизаторах напряжения

Штрихпунктирной линией выделены узлы А1.1 и А2.1, совпадающие по схеме с А1.1 рис. 2. Узел А2.1 отличается от А1.1 тем, что вместо КР142ЕН12А применен стабилизатор напряжения отрицательной полярности КР142ЕН18А [3] (у него вывод 8 - вход, 2 - выход, 17 - управляющий вывод), а диод VD26, светодиод HL3 и оксидный конденсатор С22 включены в обратной полярности.

Принцип работы устройства А2 аналогичен блоку А1 (см. рис. 2). Отличие заключается в том, что отсутствует мощный регулирующий транзистор, нет переключателя пределов выходного напряжения, а регулировка тока срабатывания защиты - ступенчатая, с помощью переключателя SA5 и резисторов R13-R16 и R25-R28. Уровни тока срабатывания защиты - 0,6 А, 0,25 А, 80 мА и 30 мА - устанавливают в обоих каналах одновременно. Выходное напряжение регулируют от нуля вследствие подачи напряжения смещения в цепи регулировки стабилизаторов DA3 и DA5 раздельно в обоих каналах. Регулируют напряжение переменными резисторами R20 и R32 от 0 до +24 В и от 0 до -24 В соответственно. Напряжение смещения снимают со вспомогательного источника стабилизированного напряжения R22R23C19C20VD22-VD25.

Транзистор КТ825А (VT1) допустимо заменить любым из этой серии. Транзистор VT2 необходимо подобрать с начальным током стока около 10 мА. Регулирующий транзистор (КТ825А) и интегральные стабилизаторы устанавливают на отдельные теплоотводы или на металлическую заднюю стенку корпуса.

В последнем случае их следует надежно заизолировать от корпуса слюдяными прокладками. На переднюю панель вынесены измерительные приборы, светодиодные индикаторы, органы управления, выходные клеммы.

Габариты устройства зависят в основном от размеров сетевого трансформатора, мощность которого должна быть не менее 180 Вт. В авторском варианте сетевой трансформатор - самодельный, выполнен на ленточном тороидальном магнитопроводе 120x60x32 мм от стабилизатора напряжения для ламповых телевизоров. Первичная (сетевая) обмотка содержит 990 витков провода ПЭЛ 0,4- Обмотка II (силовая для блока А1) содержит 145 витков с отводами от 50-го и 82-го витков провода ПЭЛ диаметром 1 мм. Напряжение на выводах этой обмотки - 11, 18 и 32 В при токе не менее 3,2 А. Обмотка III (вспомогательная для блока А1) состоит из 45 витков провода ПЭЛ 0,25. Напряжение на обмотке - 10 В при токе 20 мА. Обмотка IV (силовая для блока А2) содержит 256 витков провода ПЭЛ 0,56 с отводом от середины. Напряжение на ней - 2x28 В при токе не менее 1 А. Обмотка V (вспомогательная для блока А2) состоит из 110 витков провода ПЭЛ 0,4 с отводом от середины. Напряжение на обмотке - 2x12 В при токе 50 мА.

Правильно собранное устройство в налаживании не нуждается. Возможно, потребуется подбор отдельных экземпляров ОУ. При желании можно увеличить выходной ток источников параллельным подключением необходимого числа регулирующих элементов - транзисторов параллельно VT1 в блоке А1 (в цепи эмиттеров транзисторов следует включить токовыравнивающие резисторы сопротивлением 0,1 Ом) и стабилизаторов параллельно микросхемам DA3, DA5 в блоке А2 (как подключить стабилизаторы параллельно, можно прочитать в статье [4]). В этом случае необходимо соответствующим образом изменить сопротивление токоизмерительных резисторов и, естественно, использовать более мощный сетевой трансформатор.

Лабораторный источник питания, кроме своего прямого назначения, может выполнять еще и дополнительные функции. Блок А1 можно использовать в качестве зарядного устройства. Ток зарядки устанавливают резистором R3 при замкнутых выходных клеммах. Напряжение на аккумуляторе (или батарее) и зарядный ток контролируют с помощью вольтметра PV1 и амперметра РА1 соответственно.

С помощью блока А2 можно проверять р-n переходы маломощных полупроводниковых приборов, конденсаторы емкостью от 0,1 мкФ и измерять напряжение.

Чтобы проверить р-n переходы, переключателем SA5 выбирают минимально допустимый ток. Резистором R20 (R32) устанавливают нулевое напряжение на выходе. К выходным клеммам "+" ("-") и "Общ." подключают, например, диод и плавно увеличивают напряжение. Если диод включен в прямом направлении, загорится индикатор перегрузки по току HL2 (HL3). При этом вольтметр покажет значение прямого падения напряжения на диоде. Если же диод включен в обратном направлении, режим работы блока питания не изменится. В случае проверки стабилитрона при обратном включении вольтметр покажет его напряжение стабилизации.

При проверке конденсаторов переключателем SA5 также выбирают минимальный ток нагрузки. Резистором R20 (R32) устанавливают максимальное, но не больше номинального для конкретного конденсатора, напряжение на выходе. К выходным клеммам (соблюдая полярность для оксидных конденсаторов) подключают конденсатор и включают выключатель SA4. По длительности вспышки индикатора перегрузки можно косвенно оценить емкость конденсатора или обнаружить его утечку.

Для измерения напряжения при проведении различных экспериментов и ремонтных работах можно использовать вольтметры блока. Перед работой следует отключить прибор от блока питания, разомкнув контакты выключателя SA4. Напряжение питания на исследуемое устройство удобно подавать с блока А1.

Литература

  1. Ануфриев Л. Мультиметр на БИС. - Радио, 1986, № 4, с. 34-39.
  2. Хоровиц П., Хилл У. Искусство схемотехники. - М.: Мир, 1983-
  3. Бирюков С. Микросхемные стабилизаторы напряжения широкого применения. - Радио, 1999, № 2, с. 69-71.
  4. Щербина А., Благий С, Иванов В. Применение микросхемных стабилизаторов серий 142, К142 и КР142. - Радио, 1991, № 3, с. 47-51; № 5, с. 68-70.

Автор: А.Муравьев, пос.Лесной Рязанской обл.

Смотрите другие статьи раздела Блоки питания.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Лабораторная модель прогнозирования землетрясений 30.11.2025

Предсказание землетрясений остается одной из самых сложных задач геофизики. Несмотря на развитие сейсмологии, ученые все еще не могут точно определить момент начала разрушительного движения разломов. Недавние эксперименты американских исследователей открывают новые горизонты: впервые удалось наблюдать микроскопические изменения в контактной зоне разломов, которые предшествуют землетрясению. Группа под руководством Сильвена Барбота обнаружила, что "реальная площадь контакта" - участки, где поверхности разлома действительно соприкасаются - изменяется за миллисекунды до высвобождения накопленной энергии. "Мы открыли окно в сердце механики землетрясений", - отмечает Барбот. Эти изменения позволяют фиксировать этапы зарождения сейсмического события еще до появления традиционных сейсмических волн. Для наблюдений ученые использовали прозрачные акриловые материалы, через которые можно было отслеживать световые изменения в зоне контакта. В ходе искусственного моделирования примерно 30% ко ...>>

Музыка как естественный анальгетик 30.11.2025

Ученые все активнее исследуют немедикаментозные способы облегчения боли. Одним из перспективных направлений становится использование музыки, которая способна воздействовать на эмоциональное состояние и когнитивное восприятие боли. Новое исследование международной группы специалистов демонстрирует, что даже кратковременное прослушивание любимых композиций может значительно снижать болевые ощущения у пациентов с острой болью в спине. В эксперименте участвовали пациенты, обратившиеся за помощью в отделение неотложной помощи с выраженной болью в спине. Им предлагалось на протяжении десяти минут слушать свои любимые музыкальные треки. Уже после этой короткой сессии врачи фиксировали заметное уменьшение интенсивности боли как в состоянии покоя, так и при движениях. Авторы исследования подчеркивают, что музыка не устраняет саму причину боли. Тем не менее, она воздействует на эмоциональный фон пациента, снижает уровень тревожности и отвлекает внимание, что в сумме приводит к субъективном ...>>

Алкоголь может привести к слобоумию 29.11.2025

Проблема влияния алкоголя на стареющий мозг давно вызывает интерес как у врачей, так и у исследователей когнитивного старения. В последние годы стало очевидно, что границы "безопасного" употребления спиртного размываются, и новое крупное исследование, проведенное международной группой ученых, вновь указывает на это. Работы Оксфордского университета, выполненные совместно с исследователями из Йельского и Кембриджского университетов, показывают: даже небольшие дозы алкоголя способны ускорять когнитивный спад. Команда проанализировала данные более чем 500 тысяч участников из британского биобанка и американской Программы миллионов ветеранов. Дополнительно был выполнен метаанализ сорока пяти исследований, в общей сложности включавших сведения о 2,4 миллиона человек. Такой масштаб позволил оценить не только прямую связь между употреблением спиртного и развитием деменции, но и влияние генетической предрасположенности. Один из наиболее тревожных результатов касается людей с повышенным ге ...>>

Случайная новость из Архива

Запущен гибридный самолет 05.01.2015

Промежуточным звеном для адаптации водителей и смены приоритетов автопроизводителей для плавного перехода мировой индустрии от чисто бензиновых и дизельных авто к транспортным средствам с электрической установкой можно назвать так называемые "гибриды", совмещающие в себе сразу два силовых агрегата. Однако в таком случае электромотор зачастую выполняет вспомогательную функцию, включаясь в работу вместо ДВС в режиме малых нагрузок. Кроме того, экономить топливо помогает и применяемая в гибридных автомобилях система рекуперативного торможения, позволяя восполнять заряд аккумулятора при торможении для питания электромотора бесплатной энергией.

По аналогичному принципу исследователи из Кембриджского университета совместно со специалистами корпорации Boeing разработали первую в мире гибридную версию самолета, представив миру более экологическую модификацию компактного одноместного летательного аппарата с уменьшенным расходом топлива.

Испытательные полеты детища Boeing и британских конструкторов успешно завершились несколько дней назад. Выбранная для проекта концепция функционирует по той же схеме, по которой работает электромотор в машинах-гибридах. Конструкция самолета предусматривает установку одного поршневого авиационного двигателя и электромотора, который активизируется и обеспечивает дополнительную тягу лишь в определенных случаях. К ним относятся взлет, набор высоты, а также различного рода критические ситуации, когда возникает необходимость в дополнительной мощности.

Во время полета в штатном режиме осуществляется подзарядка батарей от поршневого двигателя. За счет выбора максимально сбалансированного режима работы основной силовой установки и наличия дополнительной электрической тяги инженеры сумели добиться до 30 % экономии горючего. На данном этапе технология далека от серийного внедрения на коммерческих лайнерах, но уже сейчас она демонстрирует весьма неплохие результаты. Тестовые полеты гибридного самолета проходили в воздушном пространстве Великобритании, однако высота полетов самолета ограничилась скромными 500 м.

"Несмотря на то, что гибридные авто стали доступными еще десять лет назад, развитие гибридной авиации сдерживалось технологиями изготовления современных аккумуляторов. До недавнего времени батареи были слишком тяжелыми, громоздкими и не обладали при таких габаритных размерах должной емкостью. С появлением усовершенствованных литий-полимерных аккумуляторов ситуация изменилась, что позволило воплотить концепцию небольшого гибридного самолета в реальность уже сегодня", - поделился своим видением ситуации руководитель проекта Доктор Пол Робертсон (Dr. Paul Robertson) из Кембриджского университета.

Другие интересные новости:

▪ Источник питания Ecosol Powerstick

▪ Камера, работающая как сетчатка человеческого глаза

▪ Беспокойство передается через глаза

▪ Кофе и лысина

▪ Успешная 3D-печать в космосе

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Видеотехника. Подборка статей

▪ статья Невзирая на лица. Крылатое выражение

▪ статья Есть ли жизнь на Марсе? Подробный ответ

▪ статья Работа с метанолом. Типовая инструкция по охране труда

▪ статья Ремонт резиновых трубок. Простые рецепты и советы

▪ статья Выключение подсветки в стационарных радиостанциях. Энциклопедия радиоэлектроники и электротехники

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:





Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2025