Menu Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Интеллектуальное зарядное устройство

Бесплатная техническая библиотека

Энциклопедия радиоэлектроники и электротехники / Зарядные устройства, аккумуляторы, гальванические элементы

Комментарии к статье Комментарии к статье

Для питания современной носимой аппаратуры широко используют Ni-Cd аккумуляторы. Для их зарядки выпускается множество устройств, собирают подобные приборы и радиолюбители. Однако большинство промышленных и любительских конструкций рассчитаны на простую подзарядку аккумуляторов. Нередко они не способны зарядить их полностью из-за присущего Ni-Cd элементам недостатка - так называемого "эффекта памяти". Заключается он в том, что если зарядить неполностью разряженный аккумулятор, то он отдаст энергию только до того уровня, с которого началась зарядка. Для того чтобы этот эффект не проявлялся, аккумулятор необходимо полностью разрядить (примерно до 1 В), а потом зарядить до напряжения около 1,4 В. Описываемое ниже микроконтроллерное устройство автоматически решает эту задачу. Не полностью отдавший свою емкость аккумулятор оно вначале полностью разряжает, затем заряжает до заданного уровня, проверяет его способность нормально работать, после чего отключает от устройства.

Предлагаемое устройство предназначено для одновременной независимой зарядки четырех Ni-Cd аккумуляторов емкостью 600, 800 и 1200 мАч, но может быть использовано и для зарядки аккумуляторов других типов. Возможность изменения алгоритма работы устройства программным путем обеспечивает необходимую гибкость и легкость работы с ним.

Принципиальная схема зарядного устройства изображена на рис.1. Функционально оно состоит из блока управления и четырех одинаковых по схеме зарядно-разрядных ячеек.

Интеллектуальное зарядное устройство
(нажмите для увеличения)

Блок управления содержит МК DD1, коммутатор DD2, компаратор DA1, формирователь образцовых напряжений (VT13, VT14), узел звуковой сигнализации неисправности аккумулятора (VT15) и буфер DD3. МК управляет работой устройства в целом, обеспечивая независимую работу всех четырех зарядных узлов. Переключение напряжений, поступающих с аккумуляторов на неинвертирующий вход компаратора DA1, осуществляется коммутатором DD2. Образцовые напряжения формируются в зависимости от кода, определяемого сигналами Е0 и Е1, задаваемыми микроконтроллером. Буфер DD3 обеспечивает развязку порта Р1 микроконтроллера от зарядно-разрядных ячеек.

Каждая такая ячейка состоит из стабилизатора тока DA2 (здесь и далее указаны позиционные обозначения элементов ячейки А1), токозадающих резисторов R3 - R5, транзисторных ключей (VT1 - VT3), коммутирующих состояния узла (зарядка-разрядка-контроль) и светодиодов HL1 (красного цвета свечения) и HL2 (зеленого), индицирующих состояние узла (красный - зарядка, зеленый - разрядка). Выключатели SA1 и SA2 позволяют задать необходимый зарядный ток (в данном случае 60, 80 или 120 мА).

Рассмотрим работу устройства более подробно. При включении питания программа анализирует состояние аккумулятора G1, поочередно сравнивая напряжение на нем (сигнал К1) с образцовыми напряжениями, выдаваемыми формирователем на транзисторах VT13, VT14. Если напряжение на аккумуляторе менее 0,7 В, она "делает вывод", что ячейка пуста, и переходит к анализу состояния следующей. Если же напряжение на аккумуляторе более 1 В (обычный случай), МК DD1 выдает (через буфер DD3) сигналы R1=1, Z1=1. При этом зажигается светодиод HL2 и открываются транзисторы VT1, VT3. Первый из них блокирует канал зарядки (DA2, R3-R5, VT2), а второй подключает параллельно аккумулятору резистор R9. Начинается процесс разрядки.

В режимах разрядки и зарядки напряжение на аккумуляторах измеряется один раз в 4 с. Цикл измерения (сигнал Z1=1, R1=0) равен примерно 1 с, т. е. время на обслуживание одного аккумулятора вместе с задержкой составляет 1 с. В это время происходит измерение напряжения на аккумуляторе, и в зависимости от его значения микроконтроллер принимает решение, продолжать разрядку (зарядку) аккумулятора или отключить его (если зарядка завершена). Это наглядно видно по свечению светодиодов. Периодическое зажигание зеленого светодиода (HL2) свидетельствует о том, что аккумулятор данной ячейки находится в режиме разрядки, а красного (HL1) - в режиме зарядки.

Но вернемся к режиму разрядки. Сигнал К1 (напряжение на разряжаемом аккумуляторе) через коммутатор DD2 поступает на неинвертирующий вход компаратора DA1, где сравнивается с образцовым напряжением (около 1 В), поступающим на инвертирующий вход с формирователя на транзисторах VT13 и VT14 (первый из них открыт, а второй закрыт). В момент достижения заданного значения напряжения компаратор выдает сигнал о завершении процесса разрядки и МК переводит устройство в режим зарядки (сигналы R1 и Z1 принимают значения лог. 0). При этом загорается светодиод HL1, закрываются транзисторы VT1, VT3, a VT2 открывается.

В процессе макетирования устройства и проверки его в работе с аккумуляторами разной емкости и разных фирм было установлено, что максимальному заряду аккумулятора соответствует образцовое напряжение, равное примерно 1,45 В (с учетом потерь в измерительных цепях). При необходимости его можно изменить в ту или другую сторону подстроечным резистором R44.

При достижении напряжения на аккумуляторе G1 примерно 1,45 В зарядка прекращается. Затем на некоторое время (примерно 8... 10 с) ячейка переключается в режим разрядки (загорается светодиод HL2) с контролем напряжения на аккумуляторе. Если оно за это время существенно не изменилось, зарядка заканчивается (не светятся оба светодиода). Если же напряжение резко упало (до 1... 1,1 В), что свидетельствует о неисправности аккумулятора, то выдается звуковой сигнал, а светодиод HL2 начинает мигать.

В устройстве предусмотрен режим принудительной зарядки. Его используют в том случае, когда аккумулятор разряжен до напряжения менее 1 В или его необходимо срочно подзарядить (минуя процесс разрядки до 1 В). Включение на принудительную зарядку осуществляется кнопкой SB1 (ее удерживают в нажатом положении до зажигания светодиода HL1).

Выбор зарядных токов, равных 0,1 емкости аккумулятора, осуществляется выключателями SA1 и SA2 путем шунтирования резистора R4 резисторами R3 и R5. В положениях выключателей, показанных на схеме, зарядный ток определяется сопротивлением резистора R4 и равен 60 мА. Замыкание контактов выключателя SA1 приводит к увеличению зарядного тока до 80 мА, а обоих (SA1 и SA2) - до 110... 120 мА. Максимальный выходной ток стабилизаторов напряжения 78L05 равен 100 мА, однако в режиме стабилизатора тока он пропускает и 120 мА при относительно небольшом нагреве (в крайнем случае на него можно надеть небольшой теплоотвод).

Детали зарядного устройства монтируют на печатной плате из двусторонне фольгированного стеклотекстолита (рис. 2).

Интеллектуальное зарядное устройство

Интеллектуальное зарядное устройство

Интеллектуальное зарядное устройство

Плата рассчитана на применение постоянных резисторов МЛТ, подстроечных СПЗ-19а, конденсаторов К50-35 (С1, С4), КД-1 (С2, C3) и КМ (остальные), двухштырьковой секции от вилки PLS-40 (ХР1), кнопки В38 или В32 (SB1), миниатюрных движковых выключателей ВДМЗ-2В (SA1-SA8). В частотозадающей цепи встроенного генератора МК применен кварцевый резонатор на частоту 3,58 МГц, но допустимо использование и любого другого с частотой от 3 до 8 МГц (в этом случае в программе придется изменить некоторые константы). В качестве звукоизлучателя BF1 можно использовать телефоны типа ТМ-2В или пьезоизлучатель ЗП-31. Для подключения МК DD1 используют 20-контактную панель.

Коды "прошивки" ПЗУ МК приведены в таблице.

Интеллектуальное зарядное устройство
(нажмите для увеличения)

Исходный текст программы

Большинство резисторов устанавливают перпендикулярно плате. В отверстия, помеченные на нижнем (по рис. 2) чертеже четырьмя точками, вставляют проволочные перемычки, соединяющие печатные проводники на разных сторонах платы.

Налаживание устройства сводится к установке образцовых напряжений и требуемых значений зарядного и разрядного токов. Образцовые напряжения (см. таблицу в левой нижней части рис. 1) устанавливают подстроечными резисторами R42, R43, R44 и подбором резистора R41. Делают это без МК, временно удалив его из панели. В ее гнезда 2 и 3 вставляют (или припаивают к соответствующим контактным площадкам платы) два проводника и подсоединяют их через резисторы сопротивлением 10 кОм к источнику напряжения +5 В. Затем подают питание на плату и, соединяя названные контакты панели в разных комбинациях с общим проводом (коды 00, 01, 10, 11), с помощью подстроенных резисторов устанавливают указанные на схеме напряжения в точке К (вывод 4 микросхемы DA1; Е0 - старший бит, Е1 - младший).

Требуемые зарядные токи устанавливают подбором резисторов R3 - R5. Для этого в любую ячейку устанавливают разряженный до 1 В аккумулятор, вставляют между его положительным выводом и соответствующим контактом полоску двусторонне фольгированного стеклотекстолита (или гетинакса) с припаянными к фольге отрезками монтажного провода и подключают к свободным концам последних миллиамперметр с пределом измерения 150...300 мА. Резистор R4 временно заменяют подстроенным резистором сопротивлением 270...330 Ом (лучше многооборотным проволочным) и, включив кнопкой SB1 режим принудительной зарядки, подбирают такое сопротивление введенной в цепь части резистора, при котором зарядный ток равен 6О мА (для аккумулятора емкостью 600 мА·ч). Затем впаивают вместо него постоянный резистор близкого сопротивления, заменяют подстроечным резистор R3 и, замкнув контакты выключателя SA1, добиваются увеличения тока до 80 мА (для аккумуляторов емкостью 800 мА-ч). Наконец, при замкнутых контактах обоих выключателей SA1 и SA2 подбирают сопротивление резистора R5, соответствующее зарядному току 120 мА (для аккумуляторов емкостью 1200 мАч). Аналогично подбирают резисторы зарядных цепей и остальных трех ячеек.

Разрядный ток (около 60 мА при напряжении аккумулятора 1,2 В) устанавливают подбором резистора R9. Для ускорения разрядки аккумуляторов емкостью 800 и 1200 мАч (в первом случае током 80, а во втором - 120 мА) в коллекторную цепь транзистора VT3 можно ввести еще два резистора, подсоединяемых параллельно R9 с помощью выключателей, аналогичных SA1, SA2 (естественно, такие же изменения в этом случае необходимо внести и в разрядные цепи остальных ячеек).

В заключение следует отметить, что описанное устройство способно заряжать аккумуляторы и большей емкости. Для этого необходимо заменить DA2- DA5 стабилизаторами на больший ток (300...400 мА), а ключевые транзисторы - более мощными.

Авторы: М.Деменев, И.Королева

Смотрите другие статьи раздела Зарядные устройства, аккумуляторы, гальванические элементы.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Питомцы как стимулятор разума 06.10.2025

Помимо эмоциональной поддержки, домашние питомцы могут оказывать заметное воздействие на когнитивные процессы, особенно у пожилых людей. Новое масштабное исследование показало, что общение с кошками и собаками не просто улучшает настроение - оно действительно способствует замедлению возрастного снижения умственных способностей. Работа проводилась в рамках проекта Survey of Health, Ageing and Retirement in Europe (SHARE), охватывающего период с 2004 по 2022 год. В исследовании приняли участие тысячи европейцев старше 50 лет. Анализ показал, что владельцы домашних животных демонстрируют более устойчивые когнитивные функции по сравнению с теми, кто не держит питомцев. Особенно выражен эффект оказался у владельцев кошек и собак. Согласно данным ученых, владельцы собак дольше сохраняют хорошую память, в то время как хозяева кошек медленнее теряют способность к быстрому речевому взаимодействию. Исследователи связывают это с тем, что ежедневное взаимодействие с животными требует внимани ...>>

Мини-ПК ExpertCenter PN54-S1 06.10.2025

Компания ASUSTeK Computer презентовала новый мини-компьютер ASUS ExpertCenter PN54-S1. Устройство ориентировано на пользователей, которым важно сочетание производительности, энергоэффективности и универсальности - от офисных задач до мультимедийных проектов. В основе ExpertCenter PN54-S1 лежит современная аппаратная платформа AMD Hawk Point, использующая архитектуру Zen 4. Это поколение чипов отличается улучшенным управлением энергопотреблением и повышенной вычислительной мощностью. Новинка доступна в конфигурациях с процессорами Ryzen 7260, Ryzen 5220 и Ryzen 5210, представленных AMD в начале 2025 года. Таким образом, устройство охватывает широкий диапазон задач - от базовых офисных до ресурсоемких вычислений. Корпус мини-ПК выполнен из прочного алюминия и имеет размеры 130&#215;130&#215;34 мм, что делает его практически незаметным на рабочем столе или за монитором. Несмотря на компактность, внутренняя компоновка позволяет установить два модуля оперативной памяти SO-DIMM ...>>

Глазные капли, возвращающие молодость зрению 05.10.2025

С возрастом человеческий глаз постепенно теряет способность четко видеть на близком расстоянии - развивается пресбиопия, или возрастная дальнозоркость. Этот естественный процесс связан с утратой эластичности хрусталика и ослаблением цилиарной мышцы, отвечающей за фокусировку. Миллионы людей по всему миру сталкиваются с необходимостью носить очки для чтения или прибегают к хирургическим методам коррекции. Однако исследователи из Центра передовых исследований пресбиопии в Буэнос-Айресе представили решение, которое может стать удобной и неинвазивной альтернативой - специальные глазные капли, способные улучшать зрение на длительный срок. Разработку возглавила Джованна Беноцци, директор Центра. По ее словам, цель исследования состояла в том, чтобы предоставить пациентам с пресбиопией эффективный и безопасный способ коррекции зрения без хирургического вмешательства. Новые капли, созданные на основе пилокарпина и диклофенака, показали убедительные результаты: уже через час после первого пр ...>>

Случайная новость из Архива

В Тибете построят детектор гравитационных волн 19.01.2017

Ученые из Национальной астрономической обсерватории Китая уже разрабатывают первый телескоп для обнаружения гравитационных волн, который получит название Ngari-1. Его установят в 30 километрах к югу от поселка Шицюаньхэ тибетского округа Нгари. Детектор будет расположен на высоте 5250 метров над уровнем моря.

После ввода в эксплуатацию первого телескопа, который запланирован на 2021 год, он будет вести наблюдение и собирать точные данные о гравитационных волнах в Северном полушарии Земли. После этого начнется строительство телескопа Ngari-2 в рамках второй фазы проекта. Бюджет строительства оценивается китайцами в 19 миллионов долларов США.

Главная задача, которую поставило китайское правительство перед учеными - приспособить самые высокогорные в мире обсерватории для эффективного исследования космического пространства. В проекте также примут участие сотрудники Шанхайского института микросистем и информационных технологий, а также Института физики высоких энергий.

Китайская академия наук намерена привлекать и внешних специалистов для изучения гравитационных волн, предлагая им годовую зарплату в размере порядка 153 тысяч долларов США. Обнаружение гравитационных волн детекторами гравитационной обсерватории LIGO стало одним из главных событий в истории науки.

Другие интересные новости:

▪ Таблетки вместо спорта

▪ Лунный радиотелескоп

▪ Телефон в часах

▪ Часы CASIO G-SHOCK GMD-S5610IT

▪ Дрон чувствует запахи

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта И тут появился изобретатель (ТРИЗ). Подборка статей

▪ статья Элементарно, Ватсон! Крылатое выражение

▪ В чем специфика Реформации во Франции? Подробный ответ

▪ статья Изготовление предохранителей на любой ток. Справочник

▪ статья Электроника в автодиагностике. Энциклопедия радиоэлектроники и электротехники

▪ статья Индикатор электрического поля на аналоге ИПТ. Энциклопедия радиоэлектроники и электротехники

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:





Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2025