Menu Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Регулируемый стабилизатор напряжения с ограничением по току. Энциклопедия радиоэлектроники и электротехники

Бесплатная техническая библиотека

Энциклопедия радиоэлектроники и электротехники / Стабилизаторы напряжения

Комментарии к статье Комментарии к статье

В предлагаемой вниманию читателей статье описан регулируемый импульсный стабилизатор напряжения с ограничением по току. Устройство позволяет не только питать различную аппаратуру стабильным напряжением от 2 до 25 В, но и заряжать различные аккумуляторы стабильным током до 5 А.

Описываемый блок питания позволяет регулировать стабилизированное выходное напряжение и максимальный ток в нагрузке. Его можно использовать как для питания и налаживания радиоаппаратуры, так и для зарядки различных аккумуляторов. Устройство работает в двух режимах: в случае питания аппаратуры - как стабилизатор напряжения с защитой от перегрузок, а при зарядке аккумуляторов - как стабилизатор тока с ограничением по напряжению. Источник питания прост в использовании, не боится перегрузок и замыкания выхода, имеет световую индикацию режима работы и высокий КПД. Схема устройства показана на рис. 1.

Основные технические характеристики

  • Выходное напряжение, В......2...25
  • Ток нагрузки, А......0...5

Регулируемый стабилизатор напряжения с ограничением по току
(нажмите для увеличения)

Такие параметры, как нестабильность, пульсации и КПД, во многом определяются режимом работы и поэтому не приведены. По желанию характеристики можно изменить без значительных изменений устройства. Например, если необходимо получить больший выходной ток, следует поставить датчик тока - резистор R14 большей мощности, а также увеличить сопротивление переменного резистора R5. Для уменьшения пульсаций целесообразно на выходе установить LC-фильтр, однако это приведет к снижению КПД.

Блок питания содержит следующие узлы: внутренний стабилизатор "отрицательного" напряжения VT1VD1R1 с фильтром С4; внутренний стабилизатор "положительного" напряжения VT2VD2R2 с фильтром С5; узел ограничения тока DA1.1R3-R7R10R 14; узел ограничения напряжения DA1.2VD3R15- R18; формирователь импульсов DD1.2DD1.3; индикаторы состояния DD1.1HL1R12 и DD1.4HL2R13; коммутирующий транзистор VT3; конденсаторы входного С1-C3, промежуточного С7, С8 и выходного С6 фильтров.

Рассмотрим работу устройства в режиме стабилизации напряжения. При включении на стабилитроне VD3 появляется напряжение, часть которого с движка переменного резистора R16 (которым регулируют выходное напряжение) поступает на инвертирующий вход ОУ DA1.2. Поскольку коммутирующий транзистор VT3 закрыт, конденсаторы С6-С8 разряжены и напряжение на неинвертирующем входе ОУ DA1.2, снимаемое с движка подстроенного резистора R18, близко к +UBX. На выходе ОУ появляется высокий уровень, что приводит к включению излучающего диода оптрона U1.4. В результате откроется фототранзистор оптрона U1.2 и на нижнем по схеме входе элемента DD1.2 появится высокий уровень. Следовательно, на выходе элемента DD1.3 - также высокий уровень, который откроет коммутирующий транзистор VT3.

Через дроссель L1 начинает протекать ток нагрузки и зарядки конденсаторов С6-С8. Напряжение на конденсаторах и на подстроечном резисторе R18 начинает увеличиваться. В какой-то момент напряжение на неинвертирующем входе ОУ DA1.2 станет меньше, чем на инвертирующем. На выходе ОУ DA1.2 появится низкий уровень. Излучающий диод U1.4 и фототранзистор U 1.2 оптрона закроются. На нижнем по схеме аходе элемента DD1.2 и на входах элемента DD1.4 высокий уровень сменится низким. Коммутирующий транзистор закроется, а включившийся светодиод HL2 будет сигнализировать о том, что устройство работает в режиме стабилизации напряжения. По мере разрядки на нагрузку напряжение на конденсаторах С6-С8 и, соответственно, на подстроечном резисторе R18 будет уменьшаться. И как только напряжение на неинвертирующем входе станет больше, чем на инвертирующем, процесс повторится.

Напряжение с датчика тока - резистора R14 поступает на входы ОУ DA1.1. Как только ток нагрузки превысит установленное значение, напряжение на неинвертирующем входе ОУ DA1.1 станет меньше, чем на инвертирующем. На его выходе появится низкий уровень, и включенный излучающий диод оптрона U1.3 выключится. Фототранзистор оптрона U1.1 закроется. На верхнем по схеме входе элемента DD1.2 и на входах элемента DD1.1 высокий уровень сменится низким. В результате коммутирующий транзистор закроется, а включившийся светодиод HL1 просигнализирует о работе блока питания в режиме стабилизации тока. По мере разрядки конденсаторов С7, С8 ток через резистор R14 будет уменьшаться, что приведет к увеличению напряжения на неинвертирующем входе ОУ DA1.1 и затем к открыванию транзистора VT3. При повторном увеличении тока нагрузки процесс повторится. Ток стабилизации устанавливают переменным резистором R5.

Большая часть деталей блока питания смонтирована на плате из односторонне фольгированного стеклотекстолита, чертеж которой показан на рис. 2. Коммутирующий транзистор VT3 и диод VD4 размещают на теплоотводе размерами 60x90x7 мм .

Регулируемый стабилизатор напряжения с ограничением по току
(нажмите для увеличения)

Устройство можно питать от сетевого трансформатора с действующим напряжением на вторичной обмотке 20...25 В который обеспечит необходимый ток нагрузки. В авторском варианте в выпрямителе использованы диодные сборки КД227ГС.

Дроссель L1 изготавливают на основе магнитопровода Б36. Обмотка содержит 20 витков провода ПЭВ 1,35. Готовую катушку заливают эпоксидной смолой. При сборке магнитопровода между чашками устанавливают немагнитную прокладку 0,3...0,5 мм.

Если напряжение питания устройства значительно отличается от указанного на схеме, следует учесть, что сопротивление резисторов R1 и R2 рассчитывают из условия обеспечения тока стабилитронов VD1 и VD2 в пределах 3...10 мА. При существенном увеличении питающего напряжения возможно значительное возрастание мощности, рассеиваемой на транзисторах VT1 и VT2, - их следует установить на теплоотводы. Если конденсаторы фильтров не удастся расположить на плате (из-за больших габаритов), их целесообразно разместить отдельно, увеличив общую емкость конденсаторов С1-C3 до 10000-15000 мкФ, а конденсатора С6 - до 4700 мкФ.

Конденсатор С7 - ниобиевый или танталовый (К52-9, К53-27) на номинальное напряжение не менее 32 В. Транзистор IRFZ44N допустимо заменить на IRF540N, хотя он требует более интенсивного охлаждения. Светодиоды HL1 и HL2 - любые, обеспечивающие необходимую индикацию. Желательно, чтобы они были разного цвета.

Налаживание блока питания начинают при отключенном транзисторе VT3. Сначала подают напряжение на вход и проверяют работу внутренних стабилизаторов. Напряжение на конденсаторе С4 должно быть в пределах 15...16 В, а на конденсаторе С5 - 8...9 В. Незначительные отклонения не окажут заметного влияния на работу устройства. Транзисторы VT1 и VT2 при любом режиме не должны сильно нагреваться.

После этого налаживают узел ограничения тока. Движок переменного резистора R5 устанавливают в левое по схеме положение, соответствующее минимальному току. Затем подстроечным резистором R3 выравнивают напряжения на входах ОУ DA1.1: следует найти такое положение, при котором с началом поворота движка резистора R5 светодиод HL1 выключался, а в крайнем левом по схеме положении включался. При такой настройке переменным резистором R5 можно изменять максимальный выходной ток от О до 5 А. Если все же получить максимальный ток 5 А не удастся, следует увеличить сопротивление резистора R5 и повторить налаживание.

Затем подключают коммутирующий транзистор VT3 и налаживают узел ограничения напряжения. Движок переменного резистора R5 устанавливают в положение, при котором светодиод HL1 выключен. Движок подстроечного резистора R18 устанавливают в верхнее, а движок переменного резистора R16 - в среднее по схеме положение, соответствующее половине максимального напряжения. Подстроечным резистором R18 устанавливают половину максимального выходного напряжения, которое должен обеспечивать блок питания. При этом к выходу необходимо подключить нагрузку, например, резистор сопротивлением 100 Ом и мощностью 2 Вт.

Следует помнить, что максимальное выходное напряжение не должно сильно отличаться от действующего переменного напряжения на вторичной обмотке сетевого трансформатора.

По окончании налаживания целесообразно провести калибровку резисторов R5 и R16. Для этого при выключенном блоке питания движок резистора R16 необходимо установить в среднее, движок резистора R5 - в крайнее левое положение, подключить к выходу амперметр и подать напряжение питания. Далее, перемещая движок резистора R5, увеличить ток в цепи до какого-либо значения, например 1 А, и установить соответствующую риску напротив стрелки ручки резистора и т. д. Затем, заменив амперметр на вольтметр, откалибровать резистор R16. При некоторых навыках, используя полученные шкалы и индикаторы HL1 и HL2, можно без измерительных приборов достаточно точно устанавливать напряжение и ток нагрузки, зарядный ток аккумуляторов и определять на них напряжение, устанавливать предельные режимы работы, ограничивая ток и напряжение в заданных интервалах.

В заключение хотелось бы отметить, что максимальное напряжение сток-исток полевого транзистора IRFZ44N (VT3) - 55 В, максимальный ток стока - 49 А, сопротивление открытого канала - 0,022 Ом. Так что, в принципе, у описанного блока питания имеются возможности для "разгона". Кроме того, дополнив устройство RS-триггером, получим автомат, который отключится при возникновении перегрузки либо по достижении необходимого напряжения, когда блок используется как зарядное устройство.

Автор: А.Антошин, г.Рязань

Смотрите другие статьи раздела Стабилизаторы напряжения.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Хорошо управляемые луга могут компенсировать выбросы от скота 15.02.2026

Животноводство, особенно разведение крупного рогатого скота, часто обвиняют в значительном вкладе в глобальное потепление из-за мощного парникового газа - метана, который выделяется при пищеварении у жвачных животных. Это вызывает острые политические споры и призывы к сокращению потребления мяса. Однако ученые напоминают, что полная картина климатического воздействия отрасли не ограничивается только выбросами от животных: огромную роль играет окружающая экосистема - пастбища, почва и растительность, которые способны активно поглощать углекислый газ из атмосферы. Исследователи из Университета Небраски-Линкольна решили глубже изучить этот баланс. Группа под руководством профессора Галена Эриксона сосредоточилась на том, как правильно организованные пастбища накапливают углерод в растениях и грунте благодаря естественным процессам, стимулируемым выпасом скота. Ученые подчеркивают, что при достаточном уровне осадков и грамотном управлении такие луга превращаются в мощные природные погло ...>>

NASA тестирует инновационную технологию крыла 15.02.2026

Коммерческая авиация ежегодно расходует колоссальные объемы керосина, что сказывается не только на бюджете авиакомпаний, но и на состоянии окружающей среды. В 2024 году глобальные затраты на авиационное топливо достигли 291 миллиарда долларов, и эта сумма продолжает расти. Чтобы справиться с этими вызовами, NASA активно работает над технологиями, способными заметно повысить аэродинамическую эффективность самолетов. Одним из самых перспективных направлений стало создание специальной конструкции крыла, которая максимизирует естественный ламинарный поток воздуха и минимизирует сопротивление. В январе 2026 года специалисты NASA Armstrong Flight Research Center успешно провели важный этап наземных испытаний концепции Crossflow Attenuated Natural Laminar Flow (CATNLF). Для эксперимента под фюзеляж исследовательского самолета F-15B закрепили вертикально ориентированную масштабную модель высотой около 0,9 м (3 фута), напоминающую узкий киль. Такая компоновка позволила подвергнуть прототип р ...>>

Забота о внуках очень полезна для здоровья мозга 14.02.2026

Общение между поколениями приносит радость всей семье, но мало кто задумывается, насколько активно бабушки и дедушки, заботящиеся о внуках, поддерживают свою умственную форму. Регулярное взаимодействие с детьми стимулирует мозг пожилых людей, помогая сохранять память, скорость мышления и общую когнитивную активность. Новые научные данные подтверждают, что такая добровольная помощь не только важна для общества, но и может замедлять возрастные изменения в мозге. Исследователи из Тилбургского университета в Нидерландах провели анализ, чтобы понять, приносит ли уход за внуками реальную пользу здоровью пожилых людей. Ведущий автор работы Флавия Черечес отметила, что многие бабушки и дедушки регулярно присматривают за детьми, и оставался открытым вопрос, насколько это положительно сказывается на их собственном благополучии, особенно в плане когнитивных функций. Ученые поставили цель выяснить, способен ли регулярный уход за внуками замедлить снижение памяти и других умственных способ ...>>

Случайная новость из Архива

Непрозрачная прозрачность 03.12.2017

Поглощение электромагнитного излучения, в том числе света, непрозрачными материалами происходит из-за превращения внутри них электромагнитной энергии в тепло или другие виды энергии. Уголь и черная краска выглядят черными именно потому, что в этих материалах энергия падающего света практически полностью поглощается. Другие же материалы, такие как стекло или кварц, не поглощают свет и потому выглядят прозрачными.

Международная группа ученых теоретически обнаружили крайне необычный оптический эффект: при определенных условиях материал, который не обладает поглощением, должен поглощать свет.

Современная электродинамика позволяет математически описать процесс прохождения света через прозрачный материал. При этом по заданному входящему электромагнитному полю (падающему излучению) теоретики рассчитывают выходное рассеянное поле. Исследуя теоретически прохождение света с различными характеристиками через прозрачный материал, авторы работы обнаружили эффект, который по их собственному признанию, стал для них неожиданным.

Если особым образом менять во времени интенсивность падающего света, то он перестанет полностью проходить через прозрачный материал, по крайней мере, какое-то время. Поглощения по-прежнему не будет, но энергия падающего света частично будет копиться внутри прозрачного материала, не покидая его до достижения определенного значения. В частности, если увеличивать со временем интенсивность падающего света по экспоненте (т.е. пропорционально еt), то вся энергия падающего света будет копиться внутри прозрачного материала. Снаружи при этом он будет выглядеть идеально поглощающим свет. Исследователи назвали этот эффект виртуальным поглощением. Когда же экспоненциальное нарастание амплитуды падающей волны прекращается, вся "запертая" внутри слоя энергия сразу же начинает покидать его.

Обнаруженный теоретически эффект может иметь важные практические применения для гибкого управления распространением и хранением света, создания устройств низкоэнергетической памяти и оптической модуляции. Он позволит разработать устройства оптической памяти, которые будут кратковременно без потерь хранить информацию и высвобождать ее в нужный момент времени.

Другие интересные новости:

▪ Умные иглы для инъекций

▪ Доля возобновляемых источников энергии растет

▪ Старое сердце омоложено стволовыми клетками

▪ MAX44205 и MAX44206 - новые малошумящие дифференциальные ОУ

▪ Грецкие орехи полезны для здоровья сердца

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Крылатые слова, фразеологизмы. Подборка статей

▪ статья Коперник Николай. Биография ученого

▪ статья Что такое протозоа? Подробный ответ

▪ статья Хсрен луговой. Легенды, выращивание, способы применения

▪ статья Квартирная сигнализация. Энциклопедия радиоэлектроники и электротехники

▪ статья Карт у зрителя становится больше. Секрет фокуса

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:





Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2026