Menu Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Лабораторный импульсный блок питания на микросхеме L4960, 220/5-40 вольт 2,5 ампера. Энциклопедия радиоэлектроники и электротехники

Бесплатная техническая библиотека

Энциклопедия радиоэлектроники и электротехники / Блоки питания

Комментарии к статье Комментарии к статье

Предлагаемый компактный блок питания (БП) собран на интегральной микросхеме L4960 фирмы SGS-Thomson Microelectronics, представляющей собой регулируемый импульсный стабилизатор напряжения постоянного тока, который обеспечивает выходной ток до 2,5 А при выходном напряжении 5...40 В. Микросхема имеет встроенную защиту от превышения температуры, перегрузки по току и короткого замыкания в цепи нагрузки. Этот блок предназначен для питания различных электронных устройств, потребляющих мощность до 25 Вт.

Принципиальная схема устройства представлена на рис. 1. Сетевое напряжение 220 В через плавкий предохранитель FU1, контакты выключателя SA1 и помехоподавляющий фильтр C4L1L2C5 поступает на первичную обмотку понижающего трансформатора Т1 Выключатель SA1 имеет встроенный индикатор - газоразрядную лампу. Резистор R1 продлевает срок службы лампы выключателя и уменьшает ее нагрев.

Лабораторный импульсный блок питания на микросхеме L4960, 220/5-40 вольт 2,5 ампера
(нажмите для увеличения)

Напряжение вторичной обмотки трансформатора через самовосстанавливающийся предохранитель FU2 поступает на мостовой выпрямитель на диодах Шоттки VD4-VD7. Применение таких диодов снижает потери мощности на выпрямителе и, соответственно, нагрев его элементов, а также приблизительно на 1 В увеличивает выпрямленное напряжение на конденсаторе фильтра С3. Самовосстанавливающийся предохранитель FU2 защищает трансформатор от перегрузок при неисправностях выпрямителя, микросхемы DA1, а также при "ошибках" ее системы защиты.

Система защиты от перегрузок некоторых интегральных импульсных стабилизаторов, например, LM2575T, LM2576T, может давать сбои, если в качестве нагрузки подключен мощный генератор стабильного тока или другой импульсный стабилизатор сопоставимой мощности. Варистор RU1 защищает сетевой трансформатор и диоды выпрямителя от импульсных помех и бросков сетевого напряжения. Выходное напряжение регулируют переменным резистором R5 в интервале от 5 до 18 В. Верхнее по схеме положение движка переменного резистора соответствует минимальному выходному напряжению.

Рабочая частота микросхемы DA1 - около 95 кГц. Форма напряжения на выходе микросхемы (вывод 7) прямоугольная, скважность импульсов зависит от выходного, входного напряжений и тока нагрузки. Резистор R6 и диод VD1 защищают микросхему от повреждений, например, при резком повороте движка переменного резистора R5 или подключении к выходу БП заряженного конденсатора большой емкости. При перегрузке выхода стабилизатора встроенная в микросхему защита отключает выходное напряжение и примерно через 0,5 с пытается запуститься вновь.

Дроссель L3 - накопительный. Двухзвенный фильтр С9-C12L4C17-C19L5C20-С22 снижает пульсации выходного стабилизированного напряжения. Оксидный конденсатор С9 из-за сильноточных высокочастотных пульсаций имеет повышенный риск деградации, поэтому он зашунтирован керамическими конденсаторами С10-С12 Аналогичное решение применимо и к оксидному конденсатору С3.

Реле К1 включает питание светодиода HL3 при токе нагрузки более 1 А. Это позволяет оперативно отследить повышенное энергопотребление, например, УМЗЧ в режиме молчания. Ток отпускания контактов реле - около 0,6 А. Катушка реле К1 также входит в состав фильтра.

На микроамперметре РА1, стабилитроне VD8 и резисторах R10, R11 выполнен вольтметр, который измеряет выходное напряжение блока питания. Стабилитрон VD8 и резистор R11 обеспечивают "растяжку" шкалы прибора РА1.

При замкнутых контактах выключателя SA2 защита нагрузки и стабилизатора обеспечивается встроенными узлами микросхемы DA1, а в случае ее неисправности - самовосстанавливающимся предохранителем FU2. Самовосстанавливающийся предохранитель FU3 на ток 0,75 А предназначен для защиты узлов маломощной нагрузки. Выключатель SA3 позволяет оперативно отключить нагрузку от БП и тем самым уменьшить шанс повредить питаемую аппаратуру.

Светодиоды HL1, HL2 подсвечивают шкалу прибора РА1. Светодиод HL4 индицирует наличие напряжения на выходе стабилизатора DA1, a HL5 - наличие напряжения на нагрузке.

Блок питания смонтирован в металлическом корпусе размерами 178x160x49 мм от старой импортной автомагнитолы. Корпус предварительно окрашен черным автомобильным лаком БТ-577 и подвергнут сушке, сначала в течение 12 ч при комнатной температуре, затем дважды по 40 мин при температуре 180°С и еще 12 ч при комнатной температуре. Такой режим предотвращает появление пузырей на поверхности. Сушка окрашенного корпуса только при комнатной температуре может затянуться на полгода. Перед покраской в нижней и боковых стенках корпуса сверлят 100...200 вентиляционных отверстий диаметром 3 мм.

Большинство деталей конструкции размешены на двух платах, рис. 2 и рис. 3. Монтаж выполнен навесным способом. Сильноточные соединения выполнены медным монтажным проводом диаметром не менее 1 мм. Вывод 4 микросхемы, диоды VD2, VD3, конденсатор С9 должны подсоединяться к общему проводу отдельными проводниками. Соединять металлический корпус устройства и общий провод нужно в точке. указанной на схеме символом заземления (см рис. 1). Правильная разводка силовых и сигнальных цепей исключительно важна для безупречной работы БП.

Лабораторный импульсный блок питания на микросхеме L4960, 220/5-40 вольт 2,5 ампера Лабораторный импульсный блок питания на микросхеме L4960, 220/5-40 вольт 2,5 ампера

Трансформатор Т1 - ТП-30-2 от переносного черно-белого телевизора "Юность". С таким трансформатором при сетевом напряжении 220 В блок питания обеспечивает на выходе напряжение 12 В при токе нагрузки 2...5 А. При большем напряжении максимальный выходной ток линейно снижается до 0,5 А при выходном напряжении 18 В. Чтобы увеличить выходной ток до 2,5 А при напряжении 18 В, следует применить трансформатор с габаритной мощностью не менее 60 Вт и напряжением холостого хода на вторичной обмотке 22...27 В. Но такой трансформатор может не уместиться в корпусе указанных размеров

Микросхема L4960 установлена на ребристый дюралюминиевый теплоотвод с общей площадью охлаждения 100 см2 (одна сторона), изолированный от корпусе.

Дроссель L3 намотан на кольцевом магнитопроводе К32х20х6 из феррита 3000НМ. Обмотка содержит 30 витков самодельного литцендрата, составленного из 33 отрезков провода ПЭВ-2 0,13. Перед намоткой в магнитопроводе необходимо сделать немагнитный зазор, для чего кольцо разламывают в тисках на две части и склеивают моментальным суперклеем. После чего кольцо последовательно просушивают 2 ч при комнатной температуре и 6 ч при температуре 60°С. Затем кольцо обметывают лакотканью и в два слоя наматывают обмотку. Между слоями нужно проложить один слой лакоткани. Если блок питания будет рассчитан на повышенную выходную мощность (18 В, 2,5 А), то необходимо использовать либо два склеенных вместе таких кольца, либо магнитопровод большего размера. Немагнитный зазор обязателен. Дроссель установлен в прямоугольном отверстии на монтажной плате и зафиксирован силиконовым герметиком. Допустимо применение любого аналогичного дросселя индуктивностью 150,3...50 мкГн. Остальные дроссели промышленного изготовления. L1, L2 - LCHK-007, L4, L5 - НСНК-007 на Н-образных ферритовых магнитопроводах, рассчитанных на ток не менее 3 А, с сопротивлением обмоток не более 30 мОм.

Роле К1 самодельное, 23 витка провода ПЭВ-2 0,51 намотаны на баллоне геркона. КЭМ-2 Выключатель SA1 - IRS-101-1 A3 или IRS- 101-12С со встроенной лампой тлеющего разряда. Выключатель SA3 - кнопочный на ток не менее 3 А, например, KDC-A04Т, SDDF-3 Аналогичные отечественные переключатели. ПКН41-1-2 имеют значительно меньший срок службы и более тугую возвратную пружину.

Светодиоды HL1, HL2 - RL50-WH744D белого цвета свечения (8000 мКд), их можно заменить любыми с повышенной светоотдачей. Перед их линзами устанавливают полупрозрачную матовую светорассеивающую пленку. Светодиоды HL3 - RL30-RD314S красного, HU - RL30-YG414S зеленого, HL5 -RL30-HY214S желтого цветов свечения можно заменить аналогичными, например, из серии КИПД66.

Диоды SR306 можно заменить на SR360, MBR360, 31DQ06 Вместо диода UF4004 подойдет любой из серий 1N400x, UF400x, КД247, КД243, КД209. Стабилитрон BZV55C-3V6 заменим на 1N4729A, TZMC3V6, G2S3.6.

Переменный резистор R5 - импортный малогабаритный с линейной характеристикой зависимости сопротивления от утла поворота. Корпус переменного резистора соединен с общим (минусовым) проводом, но должен быть изолирован от корпуса конструкции. Сигнальный провод, идущий от переменного резистора, R6 должен быть экранирован. Остальные резисторы - любого типа общего применения соответствующей мощности. Варистор RU1 - MYG10-471 можно заменить аналогичным дисковым FNR-10K471. FNR-14K471 TNR10G471. Конденсаторы C1, C2 - керамические на номинальное напряжение не ниже 50 В. Конденсаторы С10-С12, С17, С21, С22 - керамические на номинальное напряжение не ниже 25 В. Конденсаторы С13-С16 - керамические или пленочные на номинальное напряжение не ниже 50 В. Конденсаторы С6, С7 - пленочные. Оксидные конденсаторы - импортные аналоги К50-68. Конденсаторы С4, С5 - импортные керамические на номинальное напряжение не ниже 400 В переменного тока или 630 В постоянного тока. От качества этих конденсаторов в значительной степени зависит безопасность эксплуатации БП. Можно применить конденсаторы К15-5 на рабочее напряжение не ниже 1600 В

Микроамперметр РА1 - М68501, от отечественного магнитофона. Вариант шкалы прибора размерами 40x20 мм показан на рис. 4.

Лабораторный импульсный блок питания на микросхеме L4960, 220/5-40 вольт 2,5 ампера

Шкала нарисована в простой для освоения программе Nero Cover Designer - графическом векторном редакторе из пакета программ Ahead Nero версии 8. Градуировку шкалы производят в рабочем положении прибора.

Вид на компоновку узлов в корпусе БП показан на рис. 5.

Лабораторный импульсный блок питания на микросхеме L4960, 220/5-40 вольт 2,5 ампера

Безошибочно изготовленный из исправных деталей блок питания начинает работать сразу и почти не требует налаживания. При необходимости подбором резистора R2 устанавливают верхнюю границу выходного напряжения и подбором резистора R10 - требуемую чувствительность вольтметра.

Небольшой уровень электромагнитных излучений БП и пульсаций напряжения на его выходе позволил автору поставить на этот БП питаемый от него же самодельный карманный двухконтурный. УКВ радиоприемник, собранный в первой половине 90-х на микросхеме К174ХА34. Радиоприем осуществляется в железобетонном доме на встроенную телескопическую антенну без каких-либо помех и скрипов с расстояния 30 км от радиовышки.

Автор: А. Бутов, с. Курба Ярославской обл.

Смотрите другие статьи раздела Блоки питания.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Оптимальная продолжительность сна 12.11.2025

Сон играет ключевую роль в поддержании здоровья, когнитивных функций и общего самочувствия. Несмотря на широко распространенный стереотип о восьмичасовом сне, последние исследования показывают, что оптимальная продолжительность сна для большинства здоровых взрослых ближе к семи часам. Эволюционный биолог из Гарварда, Дэниел Э. Либерман, утверждает, что традиционная норма восьми часов сна - это скорее культурное наследие индустриальной эпохи, чем биологическая необходимость. По его словам, полевые исследования, проведенные в сообществах, не использующих электричество, показывают, что средняя продолжительность сна составляет 6-7 часов, что значительно отличается от общепринятого стандарта. Современные эпидемиологические данные подтверждают этот взгляд. Исследования выявили так называемую "U-образную кривую" зависимости между продолжительностью сна и рисками для здоровья. Минимальные показатели заболеваемости и смертности наблюдаются именно у людей, спящих около семи часов в сутки. ...>>

Дефицит кислорода усиливает выброс закиси азота 12.11.2025

Парниковые газы играют ключевую роль в изменении климата, а закись азота (N2O) - один из наиболее опасных среди них. Этот газ не только втрое сильнее углекислого газа в удержании тепла, но и разрушает озоновый слой. Недавнее исследование американских ученых показало, что микробы в зонах с низким содержанием кислорода активно производят N2O, усиливая глобальные климатические риски. Команда из Университета Пенсильвании изучала прибрежные воды у Сан-Диего и провела наблюдения на глубинах от 40 до 120 метров в Восточной тропической северной части Тихого океана - одной из крупнейших зон дефицита кислорода. Исследователи сосредоточились на том, как морские микроорганизмы превращают нитраты в закись азота. В ходе работы выяснилось, что существует два пути образования N2O. Один путь начинается с нитрата, другой - с нитрита. На первый взгляд более короткий путь должен быть эффективнее, однако микробы, использующие нитрат, продуцируют больше газа, поскольку этот "сырьевой" источник более д ...>>

Омега-3 помогают молодым кораллам выживать 11.11.2025

Сохранение коралловых рифов становится все более актуальной задачей в условиях глобального изменения климата. Молодые кораллы особенно уязвимы на ранних стадиях развития, когда стрессовые условия и нехватка питательных веществ могут привести к высокой смертности. Недавнее исследование ученых из Технологического университета Сиднея показывает, что специальные пищевые добавки способны существенно повысить выживаемость личинок кораллов. В ходе работы исследователи разработали особый состав "детского питания" для коралловых личинок. В него вошли масла, богатые омега-3 жирными кислотами, а также важные стерины, необходимые для формирования клеточных мембран. Личинки, получавшие эти добавки, развивались быстрее, становились крепче и демонстрировали более высокую устойчивость к стрессовым факторам. Особое внимание ученые уделили липидам. Анализ показал, что личинки активно усваивают эти вещества, что напрямую влияет на их жизнеспособность. Стерины, содержащиеся в корме, повышают устойчи ...>>

Случайная новость из Архива

3D-печать внутри тела человека 20.06.2020

Все больше работ в наше время сосредоточено на создании человеческих органов с помощью 3D-печати. Однако такие части тела должны быть имплантированы через относительно большие разрезы. Новая технология био-чернил позволят "выращивать" органы внутри тела в человека.

В мире уже существуют различные типы био-чернил. Как правило, это жидкость, содержащая живые клетки, каркасный материал и факторы роста, которые побуждают клетки размножаться на каркасном материале, постепенно превращая его в биологическую ткань.

Такие био-чернила "выдавливаются" из сопла 3D-принтера, создавая органы вне тела, слой за слоем. Во многих случаях они твердеют под воздействием ультрафиолетового излучения. К сожалению, эти лучи вредны для тканей пациента. Новые био-чернила, разработанные американскими учеными, работают по-другому.

Жидкость подается из тонкого наконечника роботизированного сопла, которое хирургическим путем вводится в тело пациента через небольшой разрез. Чтобы удерживать каждую нить био-чернил на месте, сопло делает небольшую нишу в мягких тканях пациента, а затем помещает сгусток жидкости в это пространство, который служит как якорь. Когда сопло извлекается, оно помещает другой якорь на внешней стороне ткани. Также ученые говорят, что важно отметить, что такой материал не требует УФ-излучения для того, чтобы затвердеть.

Исследователи считают, что в перспективе это вещество может быть использовано для создания таких частей тела, как кровеносные сосуды или спинномозговые диски. Однако сейчас материал может быть применен в качестве "пластыря" для поврежденных или дефектных органов.

Другие интересные новости:

▪ Fujifilm и Panasonic разработали органический датчик изображения

▪ Белковый полупроводник

▪ Твердотельный накопитель для майнинга Team Group Chia

▪ Микросхемы Toshiba серии TC3567х, поддерживающие Bluetooth 4.1 LE

▪ Платформа для разработки инфраструктуры WiMAX

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Радиоприем. Подборка статей

▪ статья Скрепя сердце. Крылатое выражение

▪ статья Что связывает бочку Диогена и ящик Пандоры? Подробный ответ

▪ статья Проведение лабораторных опытов и практических занятий по химии. Типовая инструкция по охране труда

▪ статья Усилитель к Спектру. Энциклопедия радиоэлектроники и электротехники

▪ статья Колпак, под которым все исчезает. Секрет фокуса

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:




Комментарии к статье:

Гость
Плагиат. Автор просто перевел статью с русского на украинский.

Диаграмма
2Гость Сайт автоматически переводится на язык, который определен в Вашем браузере.


Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2025