Menu Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Стабилизатор сетевого напряжения. Энциклопедия радиоэлектроники и электротехники

Бесплатная техническая библиотека

Энциклопедия радиоэлектроники и электротехники / Стабилизаторы напряжения

Комментарии к статье Комментарии к статье

Напряжение бытовой электросети нередко отличается от стандартного (220 В+10%). Потери или броски напряжения могут достигать значительных величин и вызывать сбои в работе бытовых электроприборов. Современная теле- и радиоаппаратура оснащена импульсными источниками питания, которые обеспечивают ее нормальную эксплуатацию при напряжении сети от 160 до 230 В, а вот приборы выпуска прошлых лет требуют более стабильного напряжения электросети.

Стабилизатор сетевого напряжения

Особенно страдают от нестабильного напряжения бытовые приборы, оснащенные электродвигателями: холодильники, стиральные машины, пылесосы, электроинструмент и т.п.

Повышенное напряжение сети приводит к интенсивному нагреву обмоток электродвигателя и износу коллектора, возможен пробой изоляции. При пониженном напряжении не запускаются или включаются рывками электродвигатели, что приводит к преждевременному износу пускорегулирующей аппаратуры. При освещении помещений лампы накаливания горят тускло, и приходится увеличивать их мощность, что дополнительно снижает напряжение сети.

Выход из создавшего положения довольно прост - установить вольтодобавочный трансформатор, напряжение вторичной обмотки которого суммируется с сетевым и приближает его к стандартному напряжению. Отрицательного влияния на электросеть такое устройство не оказывает.

Наличие универсального устройства поддержания напряжения электросети позволяет защитить электроприборы как от повышенного, так и от пониженного напряжения.

Стабилизацию напряжения можно обеспечить с помощью электромеханических стабилизаторов, в которых электропривод в зависимости от входного напряжения изменяет положение скользящего контакта на тороидальном автотрансформаторе. Недостатки такого решения: подгорание обмотки за счет потери контакта с роликом, большая масса стабилизатора, поскольку через автотрансформатор передается полная мощность нагрузки, высокая цена.

В предлагаемом устройстве трансформатор небольшой мощности используется для увеличения напряжения, его мощность составляет не более 10% от мощности нагрузки.

Для стабилизации напряжения достаточно в цепь первичной обмотки трансформатора установить ключевой регулятор (полевой транзистор достаточной мощности).

Параметры стабилизатора в основном определяются примененным трансформатором. В устройстве можно использовать силовые трансформаторы. ТС180...ТС320 от старых телевизоров. Хорошо зарекомендовали себя трансформаторы типа ТН-59 или ТПП с допустимым током вторичных обмоток 6...8 А при общем напряжении 24...36 В.

Схема стабилизатора приведена на рис.1. Устройство содержит:

  • узел стабилизации напряжения - трансформатор Т1, мощный диодный мост VD1 и ключевой транзистор VT1;
  • узел выделения напряжения ошибки - диодный мост VD2 и оптопара VU1 с RC-цепями установки режима:
  • входной фильтр защиты от помех - конденсатор С1;
  • автомат-выключатель сети-SA1.

Стабилизатор сетевого напряжения

Напряжение электросети поступает на клемму. ХТ3 нагрузки через вторичную обмотку вольтодобавочного трансформатора Т1 и напрямую на клемму ХТ4. Первичная обмотка трансформатора питается от сети через диодный мост VD1, режим работы которого зависит от состояния ключевого транзистора VT1. Если он открыт, напряжение на клеммах ХТЗ, ХТ4 максимально. Резистор R1 и конденсатор С3 облегчают переходные процессы при переключении диодов моста VD1 и транзистора VT1.

Отсутствие напряжения на первичной обмотке трансформатора Т1 или неисправность в схеме приведут к отсутствию напряжения вольтодобавки, в остальном нагрузка будет работать как и раньше. Небольшое падение напряжения (несколько вольт) из-за прохождения тока нагрузки через вторичную обмотку отключенного трансформатора существенно не повлияет на работу подключенного электрооборудования.

Напряжение ошибки снимается с половины вторичной обмотки трансформатора, выпрямляется диодным мостом VD2 и через резисторы R3, R4 поступает на светодиод оптопары VU1.

Конденсатор С2 снижает резкие провалы выходного напряжения.

При повышении сетевого напряжения ток светодиода оптопары возрастает, открывается фототранзистор, который через установочные цепи R6-R8 шунтирует напряжение смещения на затворе ключевого транзистора VT1. Транзистор закрывается, и напряжение нагрузки снижается. В начальный момент транзистор VT1 открыт напряжением со стока, поступающим на затвор через резистор R5.

Конденсатор С3 при включении и зарядке от диодного моста VD1 имеет низкое сопротивление, которое возрастает через несколько миллисекунд, поэтому нагрузку желательно включать штатным включателем после запуска стабилизатора.

Светодиод HL1 указывает наличие вторичного напряжения при открытом транзисторе VT1, стабилитрон VD3 защищает затвор полевого транзистора от превышения напряжения смещения выше допустимого значения.

Устройство собрано на печатной плате, чертеж которой представлен на рис.2.

Стабилизатор сетевого напряжения

Транзистор крепится на радиаторе размерами 50x50x10 мм. Допускается параллельное соединение двух одинаковых транзисторов. Плата и трансформатор установлены в подходящем корпусе, размеры которого зависят от размеров трансформатора Т1, индикатор работы устройства HL1 и выключатель сети SA1 с предохранителями FU1, FU2 расположены сверху и сбоку корпуса. При использовании металлического корпуса необходима сетевая вилка с заземляющим контактом, провод заземления подключается к корпусу трансформатора. Силовые провода, обозначенные на схеме (рис.1) толстыми линиями, выполняются многожильным проводом сечением не менее 4 мм2, остальные - 0,5 мм2.

В стабилизаторе применены постоянные резисторы типа МЛТ или С29, подстроечные - СП или СПО. Для замены транзистора VT1 (рабочее напряжение - не менее 400 В, ток - более 3 А) можно воспользоваться данными таблицы.

Трансформаторы серий. ТС для использования в устройстве нуждаются в доработке. Для этого их придется разобрать. Сначала снимается стяжное крепление. Соединение первичных двух обмоток следует сохранить, перерисовав выводы. Разобранные половинки U-образных сердечников не должны меняться местами, это приведет к гудению трансформатора после сборки. Поскольку торцы сердечников при заводской сборке подкрашиваются и при разборке плохо разделяются, можно слегка постучать молотком по торцу одной из половинок. Старая краска со стыков счищается ножом. Вторичные обмотки удаляются. В накальной обмотке (6,3 В) предварительно пересчитывается количество витков и, исходя из этих данных, проводом ПЭЛ 1,78...2 мм наматываются новые обмотки вместо удаленных, по виткам в три раза больше накальной.

Трансформатор собирается в обратном порядке (выводы первичной обмотки должны находиться с одной стороны, как и раньше). Каркасы с обмотками устанавливаются на U-образные сердечники, торцы половинок сердечников "прокрашиваются" любой загустевшей краской (кроме нитрокраски). Через полчаса в каркасы вставляются верхние половинки, устанавливаются и затягиваются стяжные шпильки. После полной сборки первичная обмотка подключается к электросети (с соблюдением техники безопасности), вольтметром переменного напряжения измеряется напряжение вторичных обмоток (должно быть в пределах 12...18 В каждой). Суммарное напряжение двух последовательно соединенных вторичных обмоток - 24...36 В. При гудении собранного трансформатора его рекомендуется простучать деревянной ручкой молотка для "осадки" крепления и железа на место.

При применении трансформаторов типа ТН или ТПП переделка не требуется, их вторичные обмотки соединяются последовательно.

Для получения повышенного по сравнению с сетевым вторичного напряжения вывод 1 первичной обмотки Т1 соединяется последовательно с крайним выводом 7 вторичной обмотки. Напряжение между выводом 6 Т1 и свободным концом 9 вторичной обмотки должно быть выше сетевого на величину суммарного напряжения вторичных обмоток.

Наладка схемы заключается в установке пределов стабилизации выходного напряжения.

После включения (желательно с активной нагрузкой, например, с настольной лампой) резистором R8 при минимальном сопротивлении R3 выставляется выходное напряжение 225 В. Подключив более мощную нагрузку (1...1,5 кВт), выходное напряжение корректируется резистором R3 (около 215 В). Через 5...10 минут работы устройство и нагрузка отключаются от сети, и проверяются тепловые режимы всех радиодеталей. Если ключевой транзистор перегревается, нужно увеличить его радиатор.

Ввиду разброса параметров мощного полевого транзистора его начальное смещение можно подкорректировать подбором сопротивления R5. При верхнем положении движка R8 ток стока транзистора должен быть около 1,2 А.

В авторском варианте дополнительно установлен компьютерный вентилятор и амперметр с пределом 10 А, хотя эти "излишества" оказались невостребованными.

Автор: В.Коновалов

Смотрите другие статьи раздела Стабилизаторы напряжения.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Ранняя Вселенная не была ледяной 28.11.2025

Понимание того, как формировались первые структуры во Вселенной, требует взгляда в эпохи, в которых не существовало ни звезд, ни галактик, ни привычных нам источников света. Научные группы по всему миру пытаются восстановить картину тех времен при помощи слабейших радиосигналов, оставшихся от водорода, который наполнял космос вскоре после Большого взрыва. Новые результаты, полученные на радиотелескопе Murchison Widefield Array в Австралии, неожиданным образом меняют представление об этих ранних этапах. Сразу после Большого взрыва, произошедшего около 13,8 миллиарда лет назад, пространство стремительно расширялось и остывало. Через несколько сотен тысяч лет образовался нейтральный водород, и началась так называемая эпоха тьмы, когда Вселенная была лишена источников излучения. Лишь значительно позже гравитация собрала газ в плотные области, где зародились первые звезды и ранние черные дыры, а их интенсивное излучение привело к реионизации водорода и окончательному появлению света. ...>>

Устройство идеальной очистки воздуха 28.11.2025

Качество воздуха в закрытых помещениях давно стало важнейшим фактором здоровья, особенно в городах, где люди проводят подавляющую часть времени внутри зданий. В последние годы исследователи уделяют все больше внимания именно тем технологиям, которые способны задерживать или разрушать вредоносные частицы до того, как они попадут в дыхательные пути человека. Одним из таких новаторских направлений стала разработка инженеров Университета Британской Колумбии в Оканагане, которые предложили принципиально иной подход к очистке воздуха в присутствии людей. По словам профессора Школы инженерии доктора Санни Ли, традиционные персонализированные вентиляционные системы действительно могут улучшать качество воздуха вокруг пользователя, однако их принцип работы имеет ряд ограничений. Человек вынужден находиться в строго определенной зоне, а одновременное использование одной системы несколькими людьми снижает эффективность. Кроме того, непрерывный поток сухого очищенного воздуха способен вызывать ...>>

Ощущение текстуры через экран гаджета 27.11.2025

Гаджеты научились передавать изображение и звук с впечатляющей реалистичностью, но тактильные ощущения по-прежнему остаются недоступными для полноценной цифровой симуляции. Именно поэтому инженеры и исследователи во всем мире стремятся создать технологии, которые позволят "почувствовать" виртуальный объект так же естественно, как и настоящий. Новая разработка специалистов Северо-Западного университета США стала одним из самых заметных шагов в этом направлении. Возглавлявшая исследование аспирантка Сильвия Тан (Sylvia Tan) подчеркивает, что прикосновение остается последним фундаментальным чувственным каналом, для которого пока нет зрелого цифрового аналога. По ее словам, если визуальные и звуковые интерфейсы давно обеспечивают высокую степень реалистичности, то осязание лишь начинает приближаться к этому уровню. В недавней публикации в журнале Science Advances Тан отмечает, что новая технология способна изменить само представление о взаимодействии человека с устройствами. Разработ ...>>

Случайная новость из Архива

Двумерный полимер крепче стали 14.02.2022

Американские материаловеды научились синтезировать двумерные полимеры, которые, в отличие от других, способны собираться послойно вместо того, чтобы образовывать одномерные цепочки. Полученный из меламина двумерный полиарамид имеет в шесть раз меньшую плотность, чем сталь, однако почти вдвое прочнее ее. Способ изготовления масштабирован - материал самособирается в растворе.
 
Химики стремятся получить ковалентно связанную высокопериодическую молекулярную структуру толщиной в один мономер. "Молекулярный ковер" (molecular carpet) - хороший термин для понятия двумерного полимера. Настоящие двумерные полимеры будут иметь толщину в один мономер и правильную структуру.

Большой проблемой в создании двумерных полимеров является то, что, даже несмотря на то, что стратегии синтеза таких структур существуют, трехмерный сферический аналог растет гораздо быстрее. То есть только желаемая молекулярная структура полимеризуется, ее быстро обгонит уже знакомая трехмерная, для создания которой достаточно одного вращения связи присоединенного мономера. В своей работе исследователи Массачусетского технологического института попытались обойти это ограничение и начали экспериментировать с амидами.

Гипотеза авторов работы состоит в том, что сильные амидно-ароматические связки угнетают внутриструктурное вращение цепочек, то есть не даст им вернуться и выйти из плоскости. Ученые смешали меланин и тримезоилхлорид в присутствии пиридина, а полученный гель очистили и высушили в вакууме, в результате чего получили свой двумерный полимер, где молекулы собрались в нанослои благодаря прочной межслойной водородной связи.

Поскольку материал самособирается в растворе, его можно производить в больших количествах, просто увеличивая количество исходных материалов. Созданный материал ученые назвали полиарамидом. Среднюю молекулярную толщину они оценили в 3,69 ангстрема, а диаметр 10,3 нанометра, что является определяющим признаком двумерной полимеризации.

Сканирующая электронная микроскопия полученных пленок не выявила дефектов в структуре полимера, а тест на газопроницаемость показал, что полимерные пленки пропускают газ примерно в 22 раза хуже, чем наиболее газонепроницаемые барьерные материалы. Также ученые обнаружили, что модуль упругости нового материала - необходимая для деформации материала сила - достиг значение 12,7 гигапаскаля, что значительно выше, чем у термопластов, укрепленной эпоксидной смолы или нейлона. А предел прочности нового материала составил около 488 мегапаскалей, что почти вдвое больше, чем у конструкционной стали ASTM A36. При том, что плотность полимера составляет примерно одну шестую от таковой в стали.

Другие интересные новости:

▪ Эффективный ветряк-труба

▪ Новые высокоскоростные USB-кабельные сборки от Molex

▪ Акустический лазер, работающий в многочастотном режиме

▪ U-образная компьютерная клавиатура

▪ Инициативность женщины влияет на отношения в паре

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Типовые инструкции по охране труда (ТОИ). Подборка статей

▪ статья Тиски из пассатижей. Советы домашнему мастеру

▪ статья Кто такие позвоночные? Подробный ответ

▪ статья Оказание первой доврачебной помощи при отравлении. Медицинская помощь

▪ статья Измерение угла замкнутого состояния контактов (УЗСК). Энциклопедия радиоэлектроники и электротехники

▪ статья Радиоприемник УКВ с ЧМ в диапазоне частот 64...108 МГц и низковольтным питанием. Энциклопедия радиоэлектроники и электротехники

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:




Комментарии к статье:

Анатолий
Одна из лучших библиотек, которые мне встречались. Пользуюсь 4 года.


Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2025