Menu English Ukrainian Russian Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Защита источников питания от грозы. Энциклопедия радиоэлектроники и электротехники

Бесплатная техническая библиотека

Энциклопедия радиоэлектроники и электротехники / Защита аппаратуры от аварийных режимов работы сети

Комментарии к статье Комментарии к статье

Для того чтобы обезопасить аппаратуру от наведенных грозовыми разрядами импульсов, подвод электросети к телекоммуникационным и охранным устройствам, а также к системам видеонаблюдения, где она не может быть отключена по условиям эксплуатации, выполняют в соответствии с требованиями и, как правило, используют источники бесперебойного питания со встроенными сетевыми защитными устройствами.

Но что делать тем, кто, например, оставляет на даче включенную аппаратуру, извещающую владельца о проникновении на контролируемую территорию посторонних лиц? Для того чтобы снизить вероятность повреждения охранного устройства при грозе блок его питания нужно дополнить некоторыми элементами, резко ослабляющими импульсы высокого напряжения в сети, которые будем в дальнейшем называть сетевыми помехами.

Эффективность подавления таких помех одними и теми же элементами различна. Отсюда следует первая особенность - защитное устройство должно быть многоступенчатым

Вторая особенность конструирования защитного устройства - необходимость наличия в нем проводника с нулевым потенциалом, "землей". Это условие легко соблюсти в современных квартирах где электропроводка выполнена по трехпроводной схеме ("фаза" (L), "ноль" (N), "защитная земля" (РЕ)). Если питающая электросеть без защитного заземления, то придется либо самостоятельно создать контур заземления, либо смириться с тем. что подавление помех будет недостаточно эффективным. Удовлетворительно, если помехи с фазного провода отводят на нулевой, хорошо - с фазного провода и отдельно с нулевого провода на заземляющий отлично - с фазного провода отдельно на нулевой и на заземляющий, а также с нулевого на заземляющий.

Для ослабления продолжительных мощных помех, порождаемых грозовыми разрядами, в качестве поглотителей энергии импульса применяют вакуумные и газонаполненные разрядники. Как показывает статистика, доля таких помех составляет примерно 20 %. Остальные 80 % приходятся на кратковременные, которые эффективно подавляются параллельными защищаемой цепи конденсаторами и последовательными заградительными элементами - дросселями. Применяют также комбинированный метод, когда мощные помехи ослабляются параллельно включенными поглощающими элементами (ограничителями напряжения), а маломощные - последовательно.

Обобщенные характеристики наиболее распространенных ограничителей напряжения, используемых в защитных устройствах, представлены в таблице:

Газонаполненные разрядники могут быть применены в двух- и трехэлектродном исполнении в зависимости от конструкции защитного устройства - двухпроводной или трехпроводной. По надежности функционирования и максимальному импульсному току такой ограничитель напряжения превосходит все остальные (рис. 1). Это цилиндрический баллон с разрядными электродами в его торцах, наполненный инертным газом. Недостатком разрядника является его меньшее быстродействие по сравнению с другими защитными элементами, что обусловлено необходимостью некоторого интервала времени для ионизации газа.

Защита источников питания от грозы
Рис. 1

Рассмотрим трехэлектродный разрядник Т23-А230Х диаметром 8 и длиной 10 мм. Несмотря на столь малые размеры, этот защитный элемент допускает пиковый разрядный ток в многократных одиночных импульсах 8/20 мкс (фронт/спад) до 20 кА или в течение 1 с выдерживает переменный разрядный ток 10, а частотой 50 Гц. Такая эффективность защиты обеспечена особой конструкцией разрядника, которую иллюстрирует рис 1. В исходном состоянии его сопротивление превышает 10 Ом.

Когда напряжение в разрядном промежутке создает напряженность электрического поля, способную вызвать ионизацию газа, происходит электрический разряд, в результате чего сопротивление разрядника резко снижается. По завершении импульса инертный газ восстанавливает свои изоляционные свойства. Напряжение пробоя разрядного промежутка определяется как размерами и конструкцией электродов, так и свойствами заполняющего газа - составом и давлением. Специальное компаундное покрытие электродов и керамического изолятора между ними активирует их эмиссионную способность. Кольцевая форма центрального электрода позволяет максимально использовать поверхность торцевых электродов 1 и 2, обеспечивая большой разрядный ток без эрозии токонесущих поверхностей.

Чтобы компенсировать запаздывание в срабатывании от помехи с крутым фронтом (1 кВ/мкс и более), разрядники в многоступенчатых защитных устройствах, как правило, дополняют варисторами и защитными диодами, которые отводят на себя часть энергии импульсной помехи в начальный момент ее появления в электрической сети.

Металлооксидный варистор аналогичен симметричному стабилитрону - при превышении некоторого порогового значения прикладываемого напряжения сопротивление элемента резко падает. Классификационное напряжение варистора должно превышать максимальную амплитуду напряжения сети не менее чем на 5 %. Например, максимально допустимому повышению сетевого напряжения 220 В на 20 % (264 В) соответствует амплитуда 374 В. Следовательно, классификационное напряжение варистора должно быть не менее 393 В. Если использовать варистор, как во многих промышленно изготавливаемых защитных устройствах, со стандартным классификационным напряжением 390 В, в силу допускаемой технологической погрешности данного параметра существует риск его повреждения. Поэтому лучше его использовать с несколько большим классификационным напряжением варистор характеризуется также некоторой предельной энергией импульса, которую он может поглотить без разрушения.

Такая характеристика обладает свойством накопления. Это значит, что прибор без ухудшения параметров способен поглотить одиночный импульс с некоторой максимально допустимой энергией или некоторое число импульсов с меньшей энергией. Например, металлооксидный варистор диаметром 20 мм поглощает импульс с максимально допустимой энергией 410 Дж либо 10 импульсов с энергией 40 Дж. После выработки варистором заложенного ресурса его классификационное напряжение несколько увеличится, а затем с каждым последующим импульсом начнет резко снижаться, в результате варистор "выгорит". Поэтому он подлежит замене при малейшем внешнем проявлении деградации (потемнении лакокрасочного покрытия). Необходимость контроля технического состояния вариатора, находящегося внутри закрытого сетевого фильтра, является его недостатком

Защитные диоды (Transient Voltage Suppressor), подобно стабилитронам, крайне быстро становятся проводящими при увеличении приложенного напряжения сверх напряжения открывания. Время реакции такого прибора, особенно безвыводного, составляет всего лишь несколько пикосекунд. Конечно, индуктивность выводов и подводящих проводов снижает быстродействие диода, но тем не менее оно остается самым высоким среди используемых ограничителей напряжения. Существуют как однополярные защитные диоды, так и с симметричной вольт-амперной характеристикой, что позволяет их использовать без дополнительных выпрямляющих диодов в цепях переменного тока. При очень большом токе, в отличие от газонаполненного разрядника, происходящий в защитном диоде электрический пробой становится необратимым. Такой элемент подлежит замене. Промышленно изготавливаемые устройства защиты от высоковольтных импульсов в электросети как в нашей стране, так и за рубежом должны соответствовать требованиям международных стандартов, утверждаемых. Международной электротехнической комиссией (МЭК), и по общепринятой терминологии подразделяются на I, II и III класс защиты.

Устройства I класса предназначены для защиты электросети на вводе в здание перед счетчиком электрической энергии. Основными элементами таких устройств являются вакуумные и газонаполненные разрядники, способные нейтрализовать мощные грозовые разряды до 150 кА в импульсе, что соответствует прямому попаданию молнии с учетом растекания тока по подвергнувшейся электрическому удару поверхности.

Устройства II класса ослабляют импульсные помехи в этажных и цеховых распределительных щитах. Наиболее часто используемый защитный элемент в таких устройствах - варистор.

Устройства III класса предназначены для защиты отдельных устройств с потребляемым током не более 16 А. Выполняют их, как правило, на защитных диодах.

Разумеется, для безопасной эксплуатации радиоаппаратуры пользователь может оборудовать такими устройствами промышленного изготовления распределительную электросеть на даче или в квартире, но реализация такого решения может оказаться затруднительной в финансовом отношении. Гораздо дешевле обойдется самостоятельное изготовление сетевого защитного устройств.

На основе анализа современных представлений о требованиях к устройствам грозозащиты и методов их практической реализации автором разработано многоступенчатое защитное устройство, схема которого показана на рис. 2.

Защита источников питания от грозы
Рис. 2

Устройство подключают к сети с помощью электрической вилки. ХР1 с заземляющим контактом. Плавкие вставки FU1, FU2 рассчитаны на нагрузку до 1 кВт, подключаемую к розетке XS1, их наличие значительно повышает надежность защитного устройства и продлевает ресурс используемых в нем других элементов. Кратковременные помехи, неспособные вызвать срабатывание разрядника F1, будут ослаблены дросселями L2-L4 и поглощены защитным диодом VD1. Значительный вклад в ослабление таких помех вносит также надетый на сетевой кабель ферритовый цилиндр, в результате чего образуется дроссель L1. Окончательно подавляет симметричные кратковременные сетевые помехи конденсатор С1, несимметричные - С2 и С3.

Подавление фронта продолжительных сетевых помех, порождаемых грозовыми разрядами, происходит в первую очередь защитным диодом VD1 и варисторами RU1-RU3. Через 250 нс включившийся разрядник F1 отводит помеху на себя, а сработавшие плавкие вставки FU1, FU2 отключают источник питания аппаратуры от сети до наступления критических последствий.

Рассеиваемая защитными элементами в сетевом фильтре энергия импульсных помех выделяется в виде тепла при этом температура элементов может достигать 200°С и более. Поэтому из соображении пожарной безопасности корпус устройства необходимо изготавливать только из металла. Соединение корпуса с проводом от заземляющего контакта вилки. ХР1 выполняют в непосредственной близости от ввода сетевого кабеля в корпус фильтра. Розетку XS1 соединяют короткими проводами с соответствующими контактными площадками, указанными на чертеже печатной платы устройства (рис. 3).

Защита источников питания от грозы
Рис. 3

Фотография платы показана на рис. 4.

Защита источников питания от грозы
Рис. 4

Печатная плата изготовлена из односторонне фольгированного стеклотекстолита толщиной 1,5 мм. Заземляющий защитные элементы печатный проводник на плате для увеличения площади сечения облущивают припоем, создавая валик высотой 1...1,5 мм. Сетевой кабель используют с проводами сечением не менее 1 мм2. На него надевают ферритовый цилиндр. К18*9х30 мм (показан слева на рис. 4). Такие цилиндры зарубежные производители устанавливают на кабелях для подключения различных устройств к компьютеру.

Дроссели L2 и L3 наматывают проводом ПЭВ-2 диаметром 1 мм каждый на двух сложенных вместе кольцевых магнитопроводах. КП27>15-6мм из пермаллоя МП 140. Намотку выполняют в два полных слоя без межслойной изоляции, автор использовал готовые дроссели, покрытые эмалью в целях влагозащиты. Можно также применить магнитопровод. К28>14-12мм от многообмоточного дросселя в импульсном блоке питания AT компьютера.

Дроссель L4 выполняют на кольце К28-15-10мм из феррита М2000НМ. Острые кромки магнитопровода закругляют надфилем, а затем изолируют лакотканью или фторопластовой лентой. Каждая из обмоток содержит 15 витков провода. ПЭВ-2 диаметром 1 мм, из конструктивных соображений для удобства подключения выводов к печатной плате одну из обмоток наматывают в направлении, противоположном использованному для другой обмотки. В этом случае создаваемые втекающим и вытекающим токами поля в магнитопроводе будут взаимно скомпенсированы и магнитное насыщение тем самым исключено. Правильность исполнения дросселя можно проверить, измерив его индуктивность. В данной конструкции индуктивность каждой обмотки составляет 270 мкГн. Если соединить выходные концы обмоток и измерить входную индуктивность, она не превысит 10 мкГн.

Варисторы RU1-RU3 - SIOV S20K420. их можно заменить другими металлооксидными диаметром 20 мм и классификационным напряжением 420 В. В крайнем случае можно использовать оксидно-цинковые того же диаметра с классификационным напряжением 430 В, маркируемые, например, одним из производителей как MYG20K431. Высоковольтные конденсаторы С1 - С3 - из серии К78-2.

Симметричный защитный диод 1,5КЕ440СА можно заменить двумя такими же однополярными (без индекса СА) или их аналогами. В этом случае защитное устройство целесообразно дополнить индикатором сетевого напряжения и исправности защитных диодов.

Во время эксплуатации устройства необходимо периодически, особенно после грозовых дней, выполнять контроль технического состояния устройства и своевременно заменять элементы выработавшие свой ресурс.

Автор: Косенко С.

Смотрите другие статьи раздела Защита аппаратуры от аварийных режимов работы сети.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Искусственная кожа для эмуляции прикосновений 15.04.2024

В мире современных технологий, где удаленность становится все более обыденной, сохранение связи и чувства близости играют важную роль. Недавние разработки немецких ученых из Саарского университета в области искусственной кожи представляют новую эру в виртуальных взаимодействиях. Немецкие исследователи из Саарского университета разработали ультратонкие пленки, которые могут передавать ощущение прикосновения на расстоянии. Эта передовая технология предоставляет новые возможности для виртуального общения, особенно для тех, кто оказался вдали от своих близких. Ультратонкие пленки, разработанные исследователями, толщиной всего 50 микрометров, могут быть интегрированы в текстильные изделия и носиться как вторая кожа. Эти пленки действуют как датчики, распознающие тактильные сигналы от мамы или папы, и как исполнительные механизмы, передающие эти движения ребенку. Прикосновения родителей к ткани активируют датчики, которые реагируют на давление и деформируют ультратонкую пленку. Эта ...>>

Кошачий унитаз Petgugu Global 15.04.2024

Забота о домашних животных часто может быть вызовом, особенно когда речь заходит о поддержании чистоты в доме. Представлено новое интересное решение стартапа Petgugu Global, которое облегчит жизнь владельцам кошек и поможет им держать свой дом в идеальной чистоте и порядке. Стартап Petgugu Global представил уникальный кошачий унитаз, способный автоматически смывать фекалии, обеспечивая чистоту и свежесть в вашем доме. Это инновационное устройство оснащено различными умными датчиками, которые следят за активностью вашего питомца в туалете и активируются для автоматической очистки после его использования. Устройство подключается к канализационной системе и обеспечивает эффективное удаление отходов без необходимости вмешательства со стороны владельца. Кроме того, унитаз имеет большой объем смываемого хранилища, что делает его идеальным для домашних, где живут несколько кошек. Кошачий унитаз Petgugu разработан для использования с водорастворимыми наполнителями и предлагает ряд доп ...>>

Привлекательность заботливых мужчин 14.04.2024

Стереотип о том, что женщины предпочитают "плохих парней", долгое время был широко распространен. Однако, недавние исследования, проведенные британскими учеными из Университета Монаша, предлагают новый взгляд на этот вопрос. Они рассмотрели, как женщины реагируют на эмоциональную ответственность и готовность помогать другим у мужчин. Результаты исследования могут изменить наше представление о том, что делает мужчин привлекательными в глазах женщин. Исследование, проведенное учеными из Университета Монаша, приводит к новым выводам о привлекательности мужчин для женщин. В рамках эксперимента женщинам показывали фотографии мужчин с краткими историями о их поведении в различных ситуациях, включая их реакцию на столкновение с бездомным человеком. Некоторые из мужчин игнорировали бездомного, в то время как другие оказывали ему помощь, например, покупая еду. Исследование показало, что мужчины, проявляющие сочувствие и доброту, оказались более привлекательными для женщин по сравнению с т ...>>

Случайная новость из Архива

Следы древнейших приливов 30.04.2001

На юге Африки, в долине реки Шеба, обнаружены слоистые отложения, возникшие 3,2 миллиарда лет назад в результате приливов и отливов (тогда эта местность находилась на берегу океана).

Так как приливы возникают под действием притяжения Луны, по толщине слоев и расстоянию между ними геологи рассчитали, что Луна обращалась тогда вокруг Земли примерно за 20 суток (сейчас - за 27). Более того, изучение южноафриканских пластов позволяет утверждать, что орбита Луны была тогда ближе к кругу, чем к эллипсу, а это означает, что, скорее всего, Луна не была самостоятельным телом, захваченным Землей.

Новая находка поддерживает гипотезу о том, что наш спутник представляет собой кусок Земли, выбитый из нее при мощном столкновении с каким-то другим небесным телом.

Другие интересные новости:

▪ Будущее телевизоров - квантовые точки и изогнутые экраны

▪ Сверхтонкий сверхпровод

▪ Химики борются с глобальным потеплением

▪ Носимые глаза

▪ Игровая мышь Logitech G604 Lightspeed

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Дом, приусадебное хозяйство, хобби. Подборка статей

▪ статья Царь-голод. Крылатое выражение

▪ статья Как сбылись пророчества Томаса Роберта Мальтуса, пионера в области демографии? Подробный ответ

▪ статья Оператор мотальной машины. Типовая инструкция по охране труда

▪ статья Люминесцентные лампы с улучшенной цветопередачей. Достоинства. Энциклопедия радиоэлектроники и электротехники

▪ статья Резонанс маятников. Физический эксперимент

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:





All languages of this page

Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2024