Menu Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Трансформатор Тесла - разновидности, эксперименты. Энциклопедия радиоэлектроники и электротехники

Бесплатная техническая библиотека

Энциклопедия радиоэлектроники и электротехники / Блоки питания

Комментарии к статье Комментарии к статье

VTTC обязаны своим появлением изобретению и распространению мощных генераторных электронных ламп, способных создавать электромагнитные колебания мощностью в сотни и тысячи ватт. В отличие от искровых генераторов, создающих повторяющиеся пачки затухающих высокочастотных колебаний, ламповые способны генерировать непрерывный сигнал, который при необходимости можно промодулировать по амплитуде.

Это классические ламповые автогенераторы, нагрузка которых - первичная обмотка трансформатора Тесла. Такие устройства популярны среди зарубежных и отечественных любителей, хотя и в меньшей степени, чем SGTC. Основные сложности при их создании - большие размеры мощных генераторных ламп, необходимость их воздушного или даже водяного охлаждения и высоковольтного анодного питания.

Рассмотрим изображенную на рис. 9 схему лампового трансформатора Тесла на современных компонентах. Это классический генератор с индуктивной (трансформаторной) обратной связью. Лампа VL1 (пентод ГК-71, широко применяемый в любительских радиопередатчиках) включена триодом - все ее сетки соединены вместе. Пентодное включение, при котором уменьшается проходная емкость лампы и снижается вероятность ее самовозбуждения, в данном случае не имеет никаких преимуществ, поскольку именно самовозбуждение и требуется.

Трансформатор Тесла - разновидности, эксперименты
Рис. 9

Анодная нагрузка лампы - колебательный контур, образованный обмоткой I трансформатора. Т3 и конденсатором С2. Рядом с этой обмоткой на том же каркасе находится обмотка обратной связи II. Наводимое на ней напряжение поступает на сетки лампы, обеспечивая необходимую для генерации положительную обратную связь. Переменная составляющая сеточного тока замыкается на катод через конденсатор С4, а постоянная, протекая через резистор R1, создает на нем падение напряжения, приложенное минусом к сеткам лампы.

Это - напряжение автоматического смещения. Увеличиваясь по абсолютному значению, оно частично закрывает лампу при увеличении амплитуды высокочастотного сигнала, а при ее уменьшении тоже уменьшается, что приводит к росту амплитуды. Таким образом амплитуда колебаний поддерживается постоянной. Подборкой резистора R1 можно в некоторых пределах регулировать мощность генератора. Блокировочные конденсаторы С1 и С3 минимизируют проникновение высокочастотного напряжения в питающую электросеть.

Источник напряжения, подаваемого на анод лампы VL1, состоит из трансформатора Т1 от кухонной. СВЧ печи и однополупериодного выпрямителя на соединенных последовательно диодах VD1-VD4. Максимальное значение пульсирующего с частотой 50 Гц напряжения на выходе выпрямителя - около 3 кВ. Сигнал питаемого таким напряжением генератора имеет форму вспышек ВЧ колебаний, следующих с частотой пульсации. Это несколько облегчает режим работы лампы (напряжение 3 кВ больше допустимого для нее в непрерывном режиме) и благоприятно влияет на число и форму наблюдаемых разрядов.

Напряжение накала поступает на лампу VL1 от трансформатора Т2. Важно отметить, что включать устройство необходимо в два этапа. Прежде всего выключателем SA2 включают накал. и лишь через несколько десятков секунд когда катод лампы прогреется, подают анодное напряжение, замыкая выключатель SA1. Подключив трансформатор Т1 к сети через регулируемый автотрансформатор (ЛАТР) можно плавно увеличивать анодное напряжение при включении и регулировать его в процессе экспериментов.

Конструкция трансформатора Т3 показана на рис. 10. Обмотки I и II намотаны на отрезке пластиковой сантехнической трубы диаметром 160 мм. Обмотка I состоит из 30 витков изолированного провода сечением 4 мм. Обмотка II содержит 20 витков эмалированного провода диаметром 0,22 мм. Выходная обмотка (III) та же. что и в предыдущих случаях, намотанная на бутылке от кефира.

Трансформатор Тесла - разновидности, эксперименты
Рис. 10

При отсутствии лампы ГК-71 можно использовать менее мощную ГУ-50 а также применявшиеся в строчной развертке телевизоров лампы 6П36С, 6П45С. Для увеличения мощности такие лампы можно включать параллельно. Не забудьте также подобрать трансформатор Т2 с напряжением на вторичной обмотке, соответствующим номинальному напряжению накала применяемой лампы.

Колебательный контур в анодной цепи лампы VL1 необходимо настроить на резонансную частоту обмотки III трансформатора Т3. Для этого следует измерить индуктивность обмотки I и по известной формуле рассчитать емкость. Конденсатор С2 должен быть высоковольтным, например, КВИ-3. Хорошие результаты дает использование вакуумного переменного конденсатора.

Если измерить индуктивность нет возможности, от обмотки I можно сделать несколько отводов и подобрать оптимальное число витков в ней по наибольшей длине получаемых разрядов. имеет смысл предусмотреть возможность перемещения обмотки II относительно обмотки I для подбора оптимального коэффициента обратной связи.

Так же, как и в предыдущем случае следует помнить, что устройство содержит элементы, находящиеся под опасным для жизни напряжением. Любое прикосновение к нему при включенном питании недопустимо. Всю регулировку и доработку устройства можно производить только после его отключения от сети и принудительной разрядки всех высоковольтных конденсаторов.

В целом, можно отметить, что по сравнению с SGTC VTTC работает несколько "мягче", а его конструкция удобнее за счет отсутствия разрядника который постепенно обгорает и требует регулировки. интересно отметить, что разряды не похожи на те. что получались с помощью SGTC. Весьма неожиданна спиральная форма стримеров (рис. 11), причина этого автору неизвестна.

Трансформатор Тесла - разновидности, эксперименты
Рис. 11

Чтобы сравнить форму разрядов при пульсирующем и постоянном анодном напряжении, однополупериодный выпрямитель анодного напряжения был заменен двухполупериодным (диодным мостом) и добавлен сглаживающий конденсатор большой емкости. Результат показан на рис. 12.

Трансформатор Тесла - разновидности, эксперименты
Рис. 12

Различия хорошо видны. При высокочастотном напряжении, генерируемом вспышками, каждый стример существует лишь полпериода сетевого напряжения. Новый разряд не повторяет путь старого, а устремляется в другое место. Мы видим несколько длинных одиночных стримеров. При непрерывной генерации образовавшийся "факел" горит постоянно. Он весьма похож на обычное пламя и даже отклоняется, если на него подуть. Однако в неподвижном воздухе факел направлен не строго вверх, как обычное пламя, а под некоторым углом к вертикали. Возможно, это связано со структурой магнитного поля вокруг трансформатора.

Разница в режимах хорошо заметна и на слух: в пульсирующем слышен громкий гул с частотой 50 Гц, а в непрерывном - лишь легкое шипение. Теоретически можно использовать трансформатор Тесла в качестве источника звука, если промодулировать генератор звуковым сигналом. Фактически получится AM передатчик, работающий на резонансной частоте трансформатора Тесла.

Был проведен интересный эксперимент с "ионным двигателем" - вертушкой из электропроводящего материала, помещенной на острие выходного электрода трансформатора Тесла. Потоки ионизированных частиц, слетая с острых загнутых концов лопастей вертушки в одну сторону, создают реактивную тягу, приводящую ее в движение.

Для получения хороших результатов вертушка должна быть легкой и хорошо сбалансированной. Чтобы сделать фотоснимок, показанный на рис. 13, анодное напряжение на лампе VL1 пришлось снизить до 1000 В. иначе вращение получалось слишком быстрым и вертушка часто падала.

Трансформатор Тесла - разновидности, эксперименты
Рис. 13

Следует отметить, что несмотря на 100-летнюю историю, трансформатор Тесла еще не изучен до конца. Например, автору не удалось найти объяснения спиральной форме стримеров, методики точного расчета входного сопротивления трансформатора Тесла и его точного согласования с генератором, методики расчета длины разрядов и влияния их собственной емкости на резонансную частоту трансформатора. Судя по всему, эти проблемы мало исследовались и практически не освещены в доступных источниках.

В общем, трансформатор Тесла - весьма обширное и не до конца изученное поле для экспериментов. Среди дилетантов даже бытует мнение, что КПД трансформатора Тесла превышает 100%. поскольку он черпает "свободную энергию" из пространства. Это. конечно же. далеко не так. Никаких нарушений закона сохранения энергии при опытах с трансформаторами Тесла не замечено.

Как упоминалось выше, трансформатор Тесла - довольно мощный источник электромагнитного излучения.

Поэтому было интересно оценить его возможное влияние на другие электронные устройства. Для экспериментов использовался трансформатор Тесла с генератором на электронной лампе, заземленный на нулевой провод электрической сети. Было отмечено следующее:

  • компьютер, расположенный в метре от трансформатора, теряет соединение с сетью Wi-Fi. Видимо, это результат перегрузки входных цепей модуля Wi-Fi. При размещении компьютера на большем расстоянии соединение с сетью не прерывается;.
  • электронная метеостанция находясь в метре от трансформатора, подает звуковые сигналы, подобные сопровождающим нажатия на ее кнопки;.
  • сотовый телефон в метре от трансформатора работает нормально, позволяя совершать и принимать звонки;
  • телевизор, подключенный к кабельной сети, и радиоприемник диапазона FM, находясь на расстоянии 3 м от трансформатора, работают без каких-либо помех.

Таким образом, особенно опасного влияния на бытовые электронные приборы автором замечено не было. Однако при проведении опытов все-таки рекомендуется соблюдать разумную осторожность. Например, дорогостоящую аппаратуру имеет смысл на время экспериментов физически отключать от сети. Рекомендуется также отключить все антенны и длинные кабели, соединяющие электронные блоки. По возможности следует использовать для трансформатора Тесла отдельное заземление.

Хотя в Интернете встречаются описания трансформаторов Тесла с длиной разрядов более полуметра, автор не рекомендовал бы делать и запускать их в домашних условиях.

Автор: Елюсеев Д.

Смотрите другие статьи раздела Блоки питания.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Кислотность океана разрушает зубы акул 03.10.2025

Мировые океаны выполняют важнейшую функцию - они поглощают около трети углекислого газа, выбрасываемого в атмосферу. Это помогает замедлять темпы глобального потепления, но имеет и обратную сторону. Растворяясь в воде, CO2 образует угольную кислоту, которая повышает концентрацию водородных ионов и приводит к снижению pH. Вода становится более кислой, а последствия этого процесса уже заметны для морских экосистем. Средний показатель кислотности океана сейчас равен примерно 8,1, тогда как еще недавно за условную норму брали значение 8,2. По прогнозам, к 2300 году уровень может упасть до 7,3 - это сделает океан почти в десять раз кислее нынешнего состояния. Для обитателей морей подобные изменения означают не просто сдвиг химического равновесия, а реальную угрозу физиологическим процессам, начиная от формирования раковин у моллюсков и заканчивая охотничьим поведением акул. Чтобы выяснить, как именно кислотная среда отражается на зубах акул, группа немецких исследователей провела эксп ...>>

Почтовый космический корабль Arc 03.10.2025

Космические технологии становятся частью инфраструктуры, способной повлиять на логистику, медицину и даже военную сферу. Идея использовать орбиту как глобальный склад для срочных поставок звучала еще недавно как научная фантастика, но стартап Inversion пытается превратить ее в практическое решение. Компания Inversion появилась в начале 2021 года благодаря Джастину Фиаскетти и Остину Бриггсу, которые на тот момент были студентами Бостонского университета. Их замысел состоял в том, чтобы сделать возможной доставку грузов не только через спутниковые сети данных, но и в буквальном смысле - физических предметов. В основе лежит простая мысль: если космос обеспечивает доступ к любой точке Земли, то и грузы должны перемещаться тем же маршрутом. Уже за три года работы команда из 25 специалистов успела построить демонстрационный аппарат "Ray". Его запуск состоялся в рамках миссии SpaceX Transporter-12. Устройство весом 90 килограммов проверяло ключевые технологии Inversion, включая двухком ...>>

Лазерное обогащение урана 02.10.2025

Ядерная энергия остается одним из ключевых источников стабильного электричества, особенно для стран с растущими потребностями в энергоснабжении. Однако обеспечение бесперебойных поставок топлива для атомных станций требует современных технологий обогащения урана, которые одновременно эффективны и безопасны. Американская компания Global Laser Enrichment (GLE) делает значительный шаг в этом направлении, завершив масштабное тестирование лазерной технологии обогащения урана. Демонстрационная программа была проведена на объекте в Уилмингтоне, Северная Каролина. Тестирование технологии SILEX (Separation of Isotopes by Laser EXcitation), разработанной австралийской Silex Systems, стартовало в мае 2025 года и продлится до конца года. В ходе экспериментов компания планирует получить сотни фунтов низкообогащенного урана (LEU), который может быть использован в качестве топлива для атомных электростанций. GLE была создана в 2007 году для коммерциализации лазерных методов обогащения урана в С ...>>

Случайная новость из Архива

Графен ускоряет оптические коммутаторы в 100 раз 05.08.2013

Ученые из Батского и Эксетерского университетов в Великобритании придумали способ, который позволяет повысить в 100 раз скорость работы оптических переключателей, использующихся в телекоммуникационном оборудовании. Соответствующая научная статья была опубликована в журнале Physical Review Letters.

"Ежедневно огромные объемы информации проходят через оптические волокна, фотодетекторы и лазеры. Сигналы, отправляемые в инфракрасном диапазоне волн, проходят через оптические переключатели, которые конвертируют их в последовательность импульсов света", - говорится в работе ученых.

Суть изобретения заключается в использовании графена в конструкции оптического переключателя вместо обычного полупроводника. Графен представляет собой решетку из атомов углерода толщиной в один слой.

"Благодаря высокой прочности, гибкости и проводимости, легкости и невысокой цене графен является одним из самых многообещающих материалов. И теперь мы видим, что он позволяет достичь новых рубежей на телекоммуникационном рынке", - комментируют ученые.

"Чем больше мы узнаем о графене, тем больше новых замечательных свойств в нем открываем, - отмечает Саймон Бендинг (Simon Bending), один из руководителей центра исследования графена при Батском университете. - В процессе нашего исследования мы увидели, что данный материал обладает уникальными оптическими свойствами, которые открывают новые возможности".

Ранее графен уже предлагался для использования в телекоммуникационном оборудовании. В марте этого года Ученые из Технологического института Джорджии, США, разработали антенну из графена, которая позволила передавать данные со скоростью 1 Тбит/с.

В качестве другого примера можно привести совместную работу нобелевских лауреатов Андрея Гейма и Константина Новоселова, которые два года назад разработали способ повышения в 20 раз скорости передачи данных по оптоволоконным сетям. В основе их работы также лежал открытый ими ранее графен.

Другие интересные новости:

▪ Смартфон Samsung для слабовидящих людей

▪ Рукомойник для дальнобойщика

▪ Переводчик детского плача

▪ Натриево-воздушный аккумулятор

▪ Надувные перчатки

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Защита электроаппаратуры. Подборка статей

▪ статья Жан Николя Артюр Рембо. Знаменитые афоризмы

▪ статья Где находится самая глубокая в мире станция метро? Подробный ответ

▪ статья Обслуживание котлов с электрообогревом. Типовая инструкция по охране труда

▪ статья Multi band антенна 3,5-28 МГц. Энциклопедия радиоэлектроники и электротехники

▪ статья Странная ширмочка. Секрет фокуса

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:





Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2025