Menu Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Низковольтный прерыватель тока. Энциклопедия радиоэлектроники и электротехники

Бесплатная техническая библиотека

Энциклопедия радиоэлектроники и электротехники / Часы, таймеры, реле, коммутаторы нагрузки

Комментарии к статье Комментарии к статье

Этот прибор включается последовательно нагрузке, питающейся постоянным напряжением 8...15 В, и прерывает ток через нагрузку.

Ток нагрузки может быть от единиц миллиампер до нескольких десятков ампер. При этом собственный ток потребления мизерный. Характер прерывания, то есть, частота прерывания, скважность, регулируется в очень широких пределах при помощи двух переменных резисторов, одним из которых регулируется время включенного состояния нагрузки, а другим - время выключенного. Разница может достигать 100 кратной величины.

Низковольтный прерыватель тока

Регулировка осуществляется в двух диапазонах, в первом период можно регулировать от 10 секунд до 0,1 секунды. Во втором от 0,1 секунды до 0,001 секунды. То есть в частотном выражении - 0,1-10 Гц и 10 Гц-1 кГц.

Желательно чтобы регулировочные переменные резисторы были щелевого типа с линейной зависимостью регулировки сопротивления (как в графических эквалайзерах аудиотехники). Это удобнее, так как хорошо визуально воспринимается разница в установке времени включенного и выключенного состояния нагрузки, а при необходимости регулировки частоты (то есть обоих параметров сразу) ручки резисторов можно перемещать одновременно.

Благодаря таким широким диапазонам регулировки прибор можно использовать для самых разных назначений. Например, для периодической подачи световых сигналов, при этом можно в широких пределах регулировать продолжительность зажженного и выключенного состояния прожектора, или для регулировки яркости прожектора, скорости вращения электромотора, осуществляя регулировку по принципу широтно-импульсной модуляции.

При необходимости можно добавить другие диапазоны, переключая конденсаторы времязадающей цепи мультивибратора. Принципиальная схема прерывателя показана на рисунке. Основу схемы составляет мультивибратор на логических элементах микросхемы К561ЛА7. Частотозадающая цепь мультивибратора состоит из конденсаторов С1, С2 и R-составляющей, состоящей из переменных резисторов R1, R2 постоянного резистора R3 и переключающих диодов VD1 и VD2. Диоды VD1 и VD2 переключают резисторы R1 и R2 в зависимости от фазы генерируемого импульса. В зависимости от выставленного сопротивления соответствующего резистора изменяется и время соответствующей этому резистору фазы. Резистор R3 ограничивает минимальное значение временного промежутка и исключает перегрузку логического элемента из-за замыкания его выхода и входа при минимальном положении соответствующего переменного резистора.

Оставшиеся два элемента служат буфером между мультивибратором и выходным каскадом на VT1. Выход сделан на коммутаторном полевом транзисторе IRFZ30. Его отличие -большой ток и очень малое сопротивление полностью открытого канала. Ток может достигать. 30 А, при этом сопротивление канала составляет сотые доли Ома. В результате рассеиваемая на нем мощность даже при токе, близком к максимальному очень мала. Поэтому вполне достаточно маленького, можно сказать, символического пластинчатого радиатора.

Прерыватель имеет только два вывода - "+" и "-", которыми он подключается в разрыв питания нагрузки. При этом питание на схему мультивибратора поступает от источника питания нагрузки, через нагрузку. В процессе работы это напряжение скачет, так как ключ VT1 практически замыкает цепь питания микросхемы D1. Чтобы резких бросков питания микросхемы не происходило есть схема из накопительного конденсатора С3 относительно большой емкости и диода VD3 В промежутках времени, когда нагрузка выключена через нее происходит зарядка конденсатора С3 через диод VD3. В моменты времени когда нагрузка включена диод VD3 закрывается, так как его анод оказывается под отрицательным потенциалом, и микросхема питается за счет заряда, накопленного конденсатором С3, а диод VD3 исключает разряд этого конденсатора через открытый канал VT1.

Микросхему К561ЛА7 можно заменить на К561ЛЕ5 или импортные аналоги CD4001, CD4011 Вообще, можно использовать любую микросхему серий К561, CD, у которой есть минимум три инверторных логических элемента. То есть, вполне возможно К561ЛА9, К561ЛЕ6, К561ПН2 и другие. Включать согласно цоколевку. Лишние элементы, например, четыре элемента микросхемы К561ЛН2 можно подключить параллельно друг другу (на месте D1.3, D1.4). Это даже лучше, так как повышает мощность выхода на ключ.

Диоды 1N4148 можно заменить на КД522, КД521, КД102, КД103.

Конденсатор С1 - любого типа. Конденсатор С2 - типа К73-17 или аналогичный (неполярный) С3 - аналог К50-16. Резисторы любого типа. Переменные резисторы тоже могут быть любого типа, но желательно щелевые с линейной зависимостью регулировки сопротивления.

Перед началом работы желательно дать конденсатору С3 зарядиться, установив регулировочные резисторы в максимальное положение.

Автор: Лыжин Р.

Смотрите другие статьи раздела Часы, таймеры, реле, коммутаторы нагрузки.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Зеркальные спутники и их угрозы для астрономии и экологии 09.11.2025

Калифорнийский космический стартап Reflect Orbital, который планирует к 2030 году вывести на орбиту 4 000 зеркальных спутников, отражающих солнечный свет на Землю даже ночью. Главная цель - увеличить эффективность солнечных электростанций, обеспечивая непрерывное освещение в ночное время. Первый демонстрационный аппарат EARENDIL-1 с зеркалом площадью 334 м2 предполагается запустить в апреле 2026 года, а соответствующая заявка уже подана в Федеральную комиссию связи США (FCC). Проект получил 1,25 млн долларов поддержки от ВВС США в рамках программы для малого бизнеса. Идея заключается в том, чтобы спутники создавали дополнительное освещение для энергетических систем, однако многие ученые выражают сомнения как в технической реализуемости, так и в потенциальном вреде для окружающей среды. Астрономы, включая Майкла Брауна и Мэтью Кенворти, подсчитали, что отраженный свет будет примерно в 15 000 раз слабее дневного солнца, хотя и ярче полной Луны. Для того чтобы создать хотя бы 20% дн ...>>

Портативный твердотельный накопитель Lexar Air 09.11.2025

Компания Lexar представила портативный твердотельный накопитель Air (pSSD), сочетающий компактность, высокую скорость и надежность. Вес устройства составляет всего 19 граммов, а толщина в тончайшей части достигает всего 6 мм, что делает его одним из самых легких и тонких SSD на рынке. Накопитель выпускается в двух вариантах емкости: 512 ГБ и 1 ТБ. Версия на 1 ТБ оценивается примерно в 459 юаней (около $64), а старт продаж модели на 512 ГБ пока не объявлен. Lexar Air оснащен интерфейсом USB 3.2 Gen 1 (5 Гбит/с) и разъемом USB-C, при этом в комплект входит переходник с USB-C на USB-A для универсальной совместимости. Производитель заявляет скорость последовательного чтения до 390 МБ/с и записи до 400 МБ/с, что позволяет быстро передавать большие файлы, включая видео высокой четкости. Корпус накопителя выполнен в компактном форм-факторе, который удобно держать на ладони, а максимальная толщина не превышает 9,3 мм. Конструкция выдерживает падения с высоты до 2 метров, а для удобног ...>>

Горькие продукты улучшают работу мозга 08.11.2025

Как выяснили японские ученые, горький вкус флаванолов играет важную роль в стимуляции центральной нервной системы. Даже при минимальном усвоении этих веществ организм получает сигнал к повышению активности нейромедиаторов и улучшению когнитивных функций, что делает натуральные продукты с горьким вкусом потенциально полезными для мозга и общей физиологии. В поисках способов улучшить работу мозга ученые все чаще обращаются к натуральным соединениям, содержащимся в привычных продуктах питания. Одним из таких веществ являются флаванолы, присутствующие в какао, красном вине и ягодах. Исследователи из Технологического института Сибаура в Японии выяснили, что горький и вяжущий вкус этих соединений способен активировать мозг через вкусовые рецепторы, способствуя улучшению памяти, внимания и способности к обучению. Ранее было известно, что флаванолы защищают нейроны и поддерживают когнитивные функции, однако их биодоступность - доля вещества, поступающая в кровь - крайне низка. Это вызвал ...>>

Случайная новость из Архива

IBM увеличила емкость флеш-памяти в 100 раз 13.01.2012

IBM совершила прорыв в сфере магнитной памяти, добившись в 100 раз большей плотности записи информации по сравнению с современными технологиями.

Ученые исследовательской лаборатории IBM в Сан-Хосе, Калифорния, используя сканирующий туннельный микроскоп, смогли в 12 атомов антиферромагнетика записать 1 бит данных. До этого еще никогда не удавалось поместить информацию в столь малое количество элементарных частиц материи. Для сравнения, в современном жестком диске 1 бит данных хранится примерно на 1 млн атомов. Что более важно, биты удалось расположить друг к достаточно близко без изменения их магнитного момента - благодаря свойствам антиферромагнетика. Это стало прорывом в направлении разработки магнитной памяти, так как общую площадь материала, необходимую для хранения 2 и более битов, удалось намного сократить.

Антиферромагнетики - это вещества, в которых направление магнитного момента атомов различается (в отличие от ферромагнитиков, в которых направление совпадает). Сегодня такие вещества используются в конструкции записывающих головок жестких дисков, а также в магнитной памяти STT-RAM, которой также занимается IBM. "Полупроводниковая индустрия идет по пути миниатюризации, мы же начали с другого конца - базового элемента материи, единичных атомов", - прокомментировал Андреас Хейнрих (Andreas Heinrich), ведущий специалист IBM по исслабсолютногоедованию атомарных структур.

В качестве эксперимента ученые сохранили в антиферромагнетике (нитрид меди) слоган IBM "Think". Для записи ASCII-кода каждой буквы потребовался 1 байт - то есть по 8 битов или 96 атомов. Работа выполнялась при температуре около абсолютного нуля. В результате более близкого размещения битов друг к другу ученым удалось добиться плотности записи примерно в 100 раз большей по сравнению с плотностью записи в современных жестких дисках и флэш-памяти. Иными словами, для записи данных потребовалось в 100 раз меньше площади, чем в современных накопителях информации. Результаты эксперимента были опубликованы в журнале Science.

Другие интересные новости:

▪ Коровы в облачном хранилище

▪ Экономичный очиститель воды на солнечной энергии

▪ Снижение выбросов металлургических предприятий

▪ Чай полезен для мозга

▪ Планшет со встроенным DLP-проектором

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Инструкции по эксплуатации. Подборка статей

▪ статья Модели - копии ракет. Советы моделисту

▪ статья Почему на Меркурии нет времен года? Подробный ответ

▪ статья Шенандоа. Чудо природы

▪ статья Внешние антенны сотовых телефонов. Энциклопедия радиоэлектроники и электротехники

▪ статья Что такое пневматика? Физический эксперимент

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:





Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2025