Menu Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Автоподзаряд аккумулятора резервного питания. Энциклопедия радиоэлектроники и электротехники

Бесплатная техническая библиотека

Энциклопедия радиоэлектроники и электротехники / Зарядные устройства, аккумуляторы, гальванические элементы

Комментарии к статье Комментарии к статье

Для обеспечения надежной работы многих стационарных устройств необходимо применять резервное питание. Чаще всего для этих целей устанавливают аккумулятор, но за ним надо следить, не допуская сильного разряда и вовремя ставить на подзаряд. Удобнее эту обязанность поручить автоматике.

Для подзаряда аккумулятора необходимо соответствующее устройство (внутреннее или внешнее).

Зарядное устройство можно выполнить в составе системы бесперебойного питания и полностью автоматизировать процесс, т. е. оно может включаться при снижении напряжения на аккумуляторе ниже порогового уровня, или же применить "плавающий" подзаряд. Под плавающим зарядом подразумевают подключение аккумулятора параллельно с нагрузкой (рис. 2.18), когда источник питания служит только для компенсации токов саморазряда в элементах питания. В этом случае схема получается наиболее простой.

В этих схемах поступающее напряжение с трансформатора выбирается таким, чтобы зарядный ток, проходящий через аккумулятор, компенсировал ток естественного саморазряда.

Автоподзаряд аккумулятора резервного питания
Рис. 2.18. Схемы, обеспечивающие плавающий подзаряд аккумулятора резервного питания

Нужное напряжение после выпрямителя можно подобрать экспериментально установкой дополнительных диодов или с помощью отводов от вторичной обмотки трансформатора (у некоторых унифицированных трансформаторов, например из серии ТН, ТПП и др., есть возможность немного изменить напряжение во вторичной цепи за счет переключения отводов в первичной обмотке). При этом контролируем ток в цепи аккумулятора по амперметру.

Обычно значение тока "плавающего" подзаряда не должно превышать 0,005...0,01 номинального для аккумулятора. Уменьшение тока заряда приводит только к увеличению продолжительности процесса (в данном применении время заряда значения не имеет - оно всегда будет достаточным).

Такие схемы можно применять, если ваша сеть достаточно стабильна и питающее напряжение не выходит за рамки допуска (в крупных городах за этим следят). В противном случае между трансформатором и аккумулятором устанавливается стабилизатор напряжения и диод, препятствующий прохождению тока аккумулятора в стабилизатор, когда трансформатор не включен (рис. 2.19). Микросхема КР142ЕН12 может быть заменена аналогичной импортной LM317.

Автоподзаряд аккумулятора резервного питания
Рис. 2.19. Схема зарядного устройства со стабилизатором напряжения

Так как в охранном устройстве нагрузка аккумулятора потребляет микроток, то контролировать на нем напряжение в процессе работы нет смысла - в холостом ходу оно всегда будет номинальным. Такой контроль выполняют при имитации максимальной нагрузки аккумулятору, что для полной автоматизации процесса потребует усложнения схемы зарядного устройства.

Более совершенная схема зарядного устройства приведена на рис. 2.20. Она не только поддерживает стабильное напряжение на аккумуляторе, но и имеет настраиваемую токовую защиту, которая предотвращает повреждение элементов в случае короткого замыкания на выходе (или неисправности аккумулятора). Ограничение тока полезно и в тех случаях, когда подключается новый аккумулятор (еще не заряженный или сильно разряженный ранее). В этом случае ограничение тока на нужном уровне предотвращает перегрузку питающего сетевого трансформатора (он может быть маломощным - 14...30 Вт, так как в режиме "Тревога" необходимый ток вполне может обеспечить сам аккумулятор). Кроме того, внутри микросхемы есть температурная защита, отключающая ее выход при перегреве, что исключает повреждение компонентов.

Автоподзаряд аккумулятора резервного питания
Рис. 2.20. Схема зарядного устройства с ограничением тока (нажмите для увеличения)

Для сборки устройства можно воспользоваться односторонней печатной платой из стеклотекстолита, показанной на рис. 2.21, ее внешний вид приведен на рис. 2.22.

Автоподзаряд аккумулятора резервного питания
Рис. 2.21. Топология печатной платы и расположение элементов

Автоподзаряд аккумулятора резервного питания
Рис. 2.22 Внешний вид монтажа элементов на плате

Трансформатор (Т1) можно заменить на ТП115-К9 - он имеет 2 обмотки по 12 В с допустимым током до 0,8 А. В холостом ходу на обмотке будет напряжение 16 В, а после выпрямления и сглаживания конденсатором - 19 В, что вполне достаточно для работы стабилизатора (основную часть времени схема будет работать как раз в режиме холостого хода).

Работающая аналогично еще одна схема приведена на рис. 2.23. Основой ее является микросхема L200 (отечественных аналогов нет), имеющая выводы (2 и 5) для контроля тока в нагрузке. Приведенное включение микросхемы является типовым: от номинала резистора R2 зависит максимальный ток в цепи нагрузки Iмах = 0,45/R2, а нужное напряжение выставляется резистором R3.

Автоподзаряд аккумулятора резервного питания
Рис. 2.23. Второй вариант схемы зарядного устройства с ограничением тока

Стабилизатор может обеспечить выходной ток от 0,1 до 2 А и имеет внутреннюю защиту от перегрева.

Для монтажа элементов второй схемы зарядного устройства можно воспользоваться печатной платой, показанной на рис. 2.24.

Автоподзаряд аккумулятора резервного питания
Рис. 2.24. Топология печатной платы и внешний вид монтажа

О настройке всех схем со стабилизацией. Вам потребуется миллиамперметр, вольтметр (лучше цифровой) и имитирующий нагрузку мощный резистор. Все это соединяется по схеме, показанной на рис. 2.25.

Автоподзаряд аккумулятора резервного питания
Рис. 2.25. Стенд для настройки и проверки зарядного устройства

Сначала при отключенном аккумуляторе соответствующим подстрочным резистором выставляем на выходе стабилизатора напряжение 13 Вт. После этого переключателем S1 включаем резистор Rн и проверяем ток ограничения. Его можно установить любым при помощи подбора резистора токовой обратной связи - R3 в схеме рис. 2.20 (например, для тока 220 мА - R3 = 3,9 Ом; для 300 мА - R3 - 3,3 Ом) или R2 в схеме на рис. 2.23.

Теперь вместо резистора Rh подключаем аккумулятор GB1. Необходимый ток в цепи заряда (для энергоемкости конкретного аккумулятора) устанавливаем подстройкой выходного напряжения. Окончательную установку следует делать уже после того, как аккумулятор полностью зарядится - этот ток должен компенсировать саморазряд GB1.

Автор: Шелестов И.П.

Смотрите другие статьи раздела Зарядные устройства, аккумуляторы, гальванические элементы.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Кислотность океана разрушает зубы акул 03.10.2025

Мировые океаны выполняют важнейшую функцию - они поглощают около трети углекислого газа, выбрасываемого в атмосферу. Это помогает замедлять темпы глобального потепления, но имеет и обратную сторону. Растворяясь в воде, CO2 образует угольную кислоту, которая повышает концентрацию водородных ионов и приводит к снижению pH. Вода становится более кислой, а последствия этого процесса уже заметны для морских экосистем. Средний показатель кислотности океана сейчас равен примерно 8,1, тогда как еще недавно за условную норму брали значение 8,2. По прогнозам, к 2300 году уровень может упасть до 7,3 - это сделает океан почти в десять раз кислее нынешнего состояния. Для обитателей морей подобные изменения означают не просто сдвиг химического равновесия, а реальную угрозу физиологическим процессам, начиная от формирования раковин у моллюсков и заканчивая охотничьим поведением акул. Чтобы выяснить, как именно кислотная среда отражается на зубах акул, группа немецких исследователей провела эксп ...>>

Почтовый космический корабль Arc 03.10.2025

Космические технологии становятся частью инфраструктуры, способной повлиять на логистику, медицину и даже военную сферу. Идея использовать орбиту как глобальный склад для срочных поставок звучала еще недавно как научная фантастика, но стартап Inversion пытается превратить ее в практическое решение. Компания Inversion появилась в начале 2021 года благодаря Джастину Фиаскетти и Остину Бриггсу, которые на тот момент были студентами Бостонского университета. Их замысел состоял в том, чтобы сделать возможной доставку грузов не только через спутниковые сети данных, но и в буквальном смысле - физических предметов. В основе лежит простая мысль: если космос обеспечивает доступ к любой точке Земли, то и грузы должны перемещаться тем же маршрутом. Уже за три года работы команда из 25 специалистов успела построить демонстрационный аппарат "Ray". Его запуск состоялся в рамках миссии SpaceX Transporter-12. Устройство весом 90 килограммов проверяло ключевые технологии Inversion, включая двухком ...>>

Лазерное обогащение урана 02.10.2025

Ядерная энергия остается одним из ключевых источников стабильного электричества, особенно для стран с растущими потребностями в энергоснабжении. Однако обеспечение бесперебойных поставок топлива для атомных станций требует современных технологий обогащения урана, которые одновременно эффективны и безопасны. Американская компания Global Laser Enrichment (GLE) делает значительный шаг в этом направлении, завершив масштабное тестирование лазерной технологии обогащения урана. Демонстрационная программа была проведена на объекте в Уилмингтоне, Северная Каролина. Тестирование технологии SILEX (Separation of Isotopes by Laser EXcitation), разработанной австралийской Silex Systems, стартовало в мае 2025 года и продлится до конца года. В ходе экспериментов компания планирует получить сотни фунтов низкообогащенного урана (LEU), который может быть использован в качестве топлива для атомных электростанций. GLE была создана в 2007 году для коммерциализации лазерных методов обогащения урана в С ...>>

Случайная новость из Архива

Малошумящий 38V LDO-регулятор ST Microelectronics LDO40L 29.12.2018

Компания ST Microelectronics выпустила новый линейный регулятор LDO40L с входным напряжением до 38 В и выходным током до 400 мА. Стабилизатор обладает автомобильной квалификацией AEC-Q100 (grade 1), а также отличным набором параметров: высоким PSRR, низким током собственного потребления и малыми шумами.

Технические параметры:

диапазон входных напряжений - 3,5...38 В;
выходное настраиваемое/фиксированное напряжение (3,3, 5,0 В);
выходной ток до 400 мА;
точность поддержания выхода 1% во всем диапазоне температур;
низкое собственное потребление - 45 мкА;
малой выходной шум - всего 20 мкВ (действующее значение);
высокий показатель PSRR - 70 дБ при 1 кГц;
отличная скорость отработки переходных процессов;
диапазон рабочих температур -40...125°С;
вариант корпуса DFN6 (3х3 мм).

Типовые применения:

автомобильная электроника;
промышленные применения.

Другие интересные новости:

▪ Новые диоды Шотки от VISHAY

▪ Подростки не слушают родителей

▪ Свинец прочнее стали

▪ Вместо бумажных книг - электронные

▪ Мощный полупроводник толщиной в один атом

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Усилители мощности. Подборка статей

▪ статья Танталовы муки. Крылатое выражение

▪ статья Можно ли спастись от ограбления перед банкоматом, введя пин-код задом наперед? Подробный ответ

▪ статья Хлорис гвианский. Легенды, выращивание, способы применения

▪ статья Паротурбинные солнечные энергетические установки. Энциклопедия радиоэлектроники и электротехники

▪ статья Огонь-художник. Секрет фокуса

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:




Комментарии к статье:

Михаил
Доходчивое объяснение работы схем и подборки деталей делают честь и доверие автору этой статьи. Спасибо Вам за бескорыстную помощь новичкам в освоении азов электроники!


Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2025