Menu Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Преобразователь напряжения для питания фотоэлектронного умножителя. Энциклопедия радиоэлектроники и электротехники

Бесплатная техническая библиотека

Энциклопедия радиоэлектроники и электротехники / Преобразователи напряжения, выпрямители, инверторы

Комментарии к статье Комментарии к статье

Здесь описан преобразователь напряжения, предназначенный для питания фотоэлектронного умножителя, входящего в состав чувствительного радиометрического комплекса. Схемотехнические решения, заложенные в преобразователе, могут быть использованы при разработке стабилизированных источников питания многих других электронных устройств.

Преобразователь, схема которого приведена на рис. 132, обеспечивает на выходе напряжение 1000 В. Стабильность выходного напряжения такова, что при колебании тока нагрузки от 0 до 200 мкА изменение выходного напряжения не обнаружимо по четырехзнаковому цифровому вольтметру, т. е. не превышает 0,1%.

Преобразователь напряжения для питания фотоэлектронного умножителя
Рис. 132. Принципиальная схема преобразователя напряжения (нажмите для увеличения)

Устройство собрано по традиционной схеме с использованием обратного выброса напряжения самоиндукции. Транзистор VT1, работающий в ключевом режиме, подает на первичную обмотку трансформатора Т1 напряжение источника питания на время, равное 10... 16 мкс. В момент закрывания транзистора энергия, накопленная в магнитопроводе трансформатора, преобразуется в импульс напряжения около 250 В на вторичной обмотке (около 40 В - на первичной). Умножитель напряжения, образованный диодами VD3-VD10 и конденсаторами С8 - С15, повышает его до 1000 В.

Импульсы управления транзистором VT1 вырабатывает генератор с регулируемой скважностью, собранный на элементах DD1.1-DD1.3. Управление скважностью импульсов осуществляется выходным напряжением операционного усилителя DA1.

Выходное напряжение преобразователя через резистивный делитель R1 - R3 поступает на неинвертирующий вход операционного усилителя и сравнивается им с образцовым напряжением, стабилизированным термокомпенсированным стабилитроном VD1 В момент включения выходное напряжение преобразователя равно нулю, близко к нулю и напряжение на выходе ОУ DA1. Генератор формирует импульсы максимальной длительности. При соотношении сопротивлений резисторов R9, R11, R12, указанных на схеме, отношение длительности импульсов положительной полярности на выходе элемента DD1.4 к периоду их повторения (коэффициент заполнения) близко к 0,65. При достижении выходным напряжением заданного значения отрицательное напряжение на выходе ОУ DA1 возрастает, коэффициент заполнения уменьшается, а выходное напряжение стабилизируется.

Во время испытания описываемого здесь преобразователя длительность импульсов при нагрузке в указанных выше пределах изменялась от 10 до 12 мкс, а их частота повторения - от 18 до 30 кГц, что соответствует коэффициенту заполнения от 0,18 до 0,4. Потребляемый ток увеличивался с 22 до 47 мА. При максимальной нагрузке и уменьшении питающего напряжения до 10,5 В длительность импульсов увеличивалась до 16 мкс при частоте 36 кГц, что соответствует коэффициенту заполнения 0,57. Дальнейшее снижение напряжения питания приводило к срыву стабилизации. При токе нагрузки 100 мкА стабилизация сохраняется до напряжения источника питания 9,5 В.

Конденсатор С3 образует нижнее плечо емкостной части делителя выходного напряжения. Без него напряжение пульсаций с выхода преобразователя, равное примерно 1 В, проходило бы на вход ОУ DA1 через емкость резисторов R1 и R2 практически без ослабления. Конденсатор С4 обеспечивает преобразователю устойчивость работы в целом. Диод VD2 и резистор R12 ограничивают максимально возможный коэффициент заполнения. Минимальные длительность импульсов и коэффициент заполнения определяются соотношением сопротивлений резисторов R9 и R11. С уменьшением сопротивления резистора R9 минимальный коэффициент заполнения уменьшается и может стать равным нулю.

Стабильность выходного напряжения при различных нагрузках обеспечивается за счет большого коэффициента усиления в петле обратной связи преобразователя. Для устойчивости работы преобразователя при таком коэффициенте усиления необходим конденсатор С4 относительно большой емкости. Но это приводит к увеличению длительности установления выходного напряжения при скачкообразных изменениях нагрузки, Сократить время установления можно уменьшением емкости конденсатора С4, включением последовательно с ним резистора сопротивлением в несколько десятков килоом, подключением параллельно этому конденсатору резистора сопротивлением в несколько мегаом.

Все детали преобразователя можно смонтировать на печатной плате, выполненной из одностороннего фольгированного стеклотекстолита, Показанная на рис. 133 плата рассчитана в основном на установку резисторов МЛТ. Резисторы R1 - R3, R5 и R7, от которых зависит долговременная стабильность преобразователя, - стабильные С2-29. Подстроенный резистор R6 - СПЗ-19а. Конденсатор С1 - К53-1; С8, С15 - К73-17 на номинальное напряжение 400 В, другие конденсаторы - КМ-5, КМ-6. Выбор стабилитрона VD1 определяется предъявляемыми требованиями по стабильности. Диод VD2 - любой кремниевый маломощный, а диоды умножителя напряжения (VD3 -VD10) могут быть КД104А. Микросхема К561ЛА7 заменима на К561ЛЕ5, КР1561ЛА7, КР1561ЛЕ5 или на аналогичные из серии 564.

Преобразователь напряжения для питания фотоэлектронного умножителя
Рис. 133. Печатная плата преобразователя напряжения

Преобразователь напряжения для питания фотоэлектронного умножителя
Рис. 134. Цепь питания стабилитрона

Транзистор VT1 должен быть высокочастотным или среднечастотным, с допустимым напряжением коллектор-эмиттер не менее 50 В и напряжением насыщения не более 0,5 В при токе коллектора 100 мА. Для ускорения выхода среднечастотного транзистора из насыщения при выключении емкость конденсатора С6 следует увеличить.

Операционный усилитель К140УД6 (DA1) можно заменить на КР140УД6 без изменения рисунка печатных проводников платы или на любой другой с полевыми транзисторами на входе.

Трансформатор Т1 намотан на кольцевом магнитопроводе типоразмера К20 х 12 х 6 из феррита М1500НМЗ. Первичная обмотка содержит 35 витков, а вторичная - 220 витков провода ПЭЛШО 0,2. С целью уменьшения межобмоточной емкости провод вторичной обмотки следует укладывать одним толстым слоем, постепенно смещаясь по магнитопроводу, при этом первый и последний витки должны оказаться рядом. Первичная обмотка однослойная, ее наматывают поверх вторичной. Полярность подключения выводов обмоток роли не играет.

Настраивать преобразователь следует в таком порядке. Отключить первичную обмотку трансформатора от транзистора, а верхний (по схеме) вывод резистора R3 соединить с минусовым выводом источника питания через два резистора с общим сопротивлением 140 кОм. При вращении движка подстроечного резистора R6 коэффициент заполнения импульсов на выходе элемента DD1.4 (контролировать осциллографом или вольтметром постоянного напряжения, включенным между выходом этого элемента и общим проводом) должен скачком изменяться от минимального (примерно 0,1 или импульсы могут исчезать полностью) до максимального (0,65). Движок подстроечного резистора зафиксировать в положении возникновения этого скачка.

Затем полностью смонтировать преобразователь, подключить к его выходу вольтметр с входным сопротивлением не менее 10. МОм и включить питание. Выходное напряжение можно контролировать таким же вольтметром и по напряжению на резисторе R3 (5 В) или микроамперметром, включенным последовательно с этим резистором (50 мкА). Далее подстроить резистором R6 выходное напряжение преобразователя и проверить стабильность его работы при изменении нагрузки и напряжения источника питания.

Для уменьшения помех, излучаемых преобразователем, он помещен в латунный корпус. При необходимости большего подавления помех во вторичную цепь преобразователя можно включить простейший RC-фильтр, а в первичную - дроссель ДМ-0,1 индуктивностью 400 мкГн и проходной конденсатор.

Описанный преобразователь рассчитан на работу от стабилизированного источника питания 12 В, у которого с общим проводом соединен плюсовой вывод. Но без каких-либо изменений в монтаже с общим проводом можно соединить минусовый вывод источника питания.

В порядке эксперимента испытан вариант этого преобразователя с питанием от двуполярного источника ±12 В. Основная его часть собрана по такой же схеме, конденсатор С1 (на номинальное напряжение 30 В), вдвое меньшей емкости, включен между цепями +12 и -12 В, нижние (по схеме) вывод резистора R14 и вывод первичной обмотки трансформатора Т1 подключены к цепи +12 В. Номиналы замененных элементов: R13 - 1,1 кОм, С6 - 1600 пФ, С7 - 430 пФ, R14 - 2 кОм. Транзистор VT1 - КТ815Г. Число витков первичной обмотки трансформатора Т1 увеличено в два раза.

Если использовать нестабилизированный источник питания, то коэффициент стабилизации цепи R4VD1 может оказаться недостаточным. В этом случае цепь питания стабилитрона следует выполнить по схеме, приведенной на рис. 134. Светодиод HL1 будет выполнять функцию индикатора включения питания.

Автор: Бирюков С.

Смотрите другие статьи раздела Преобразователи напряжения, выпрямители, инверторы.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Особенности почек помогают легче переносить высоту 18.01.2025

Высокогорные регионы всегда привлекали внимание исследователей, изучающих, как человек адаптируется к жизни в условиях разреженного воздуха. Недавнее исследование группы ученых из Университета Маунт-Ройал в Канаде, возглавляемое доктором Тревором Деем, проливает свет на важную роль почек в акклиматизации к большим высотам. Работы канадских ученых объясняют, почему представители народности шерпа, которые веками живут в высокогорных районах Тибета, значительно лучше переносят высокогорье. В своем исследовании ученые наблюдали за дыханием и составом крови участников во время их подъема на высоту 4300 метров в Гималаях, в Непале. Эксперимент проводился с участием двух групп: одна состояла из жителей низменностей, не привыкших к горной среде, а другая - из шерпов, чей организм приспособлен к жизни на большой высоте. Основное различие между этими группами было в том, как их организмы реагировали на дефицит кислорода в воздухе. У шерпов наблюдалась более быстрая и масштабная адаптация к ...>>

Производство электричества с помощью термоядерного синтеза 18.01.2025

Американская компания Commonwealth Fusion Systems (CFS) нацелена на создание первой в мире термоядерной электростанции, способной подключаться к электрической сети. Этот амбициозный проект, известный как ARC (Affordable, Robust, Compact), будет построен вблизи города Ричмонд, штат Вирджиния. В соответствии с планами, новая электростанция сможет производить до 400 мегаватт чистой энергии, что вполне хватит для обеспечения электричеством 150 тысяч домохозяйств. Прогнозируется, что станция начнет работу в 2030-х годах. Принцип работы термоядерной электростанции основан на процессе термоядерного синтеза, который происходит в ядре звезд. В отличие от традиционной атомной энергетики, где используется деление ядер атомов с образованием радиоактивных отходов, термоядерный синтез создает в качестве побочного продукта безопасный гелий. Для того чтобы удерживать плазму с температурой свыше 100 миллионов градусов Цельсия, установка будет использовать мощные магнитные поля. Тем не менее, н ...>>

Экологическая защита для овощей и фруктов 17.01.2025

Исследователи из женского колледжа Шри Нараяна в Колламе, Керала, Индия, разработали инновационный способ продления свежести фруктов и овощей. Группа под руководством Пурнимы Виджаян предложила использовать съедобное покрытие, созданное на основе целлюлозных нановолокон (CNF), полученных из луковой шелухи. Этот подход не только продлевает срок хранения продуктов, но и способствует их безопасности благодаря включению нанокуркумина, известного своими антимикробными свойствами. Основным компонентом покрытия являются CNF, полученные из переработанных отходов лука. Эти нановолокна соединяются с синтетическим биополимером, который улучшает структуру покрытия, устраняя проблемы с водостойкостью и термической стабильностью, ранее свойственные материалам на основе CNF. Кроме того, добавление нанокуркумина усиливает антимикробные свойства покрытия, делая его особенно эффективным для предотвращения порчи. Для проверки эффективности этой разработки ученые провели эксперимент с апельсинами. П ...>>

Случайная новость из Архива

Трансиверы RS485 не требуют использования согласующих резисторов 22.06.2006

Компания Linear Technology представила две новые микросхемы: LTC2859 и LTC2861, которые представляют собой полудуплексный и полнодуплексный трансиверы RS485, их отличительной особенностью является наличие встроенного подключаемого согласующего резистора.

Традиционно при создании сетей на основе протокола RS485 пользователь был должен самостоятельно устанавливать согласующие резисторы сопротивлением 120 Ом. Места их установки определялись в зависимости от топологии соединительных линий и от расположения узлов сети. По мере расширения сети пользователь был должен устанавливать дополнительные согласующие резисторы.

Управляющая программа имеет возможность подключать терминирующие резисторы в трансиверах LTS2859/LTS2861, при этом обеспечивается согласование для нужного количества узлов сети - без какого-либо физического участия со стороны пользователя.

Другие интересные новости:

▪ USB-микрофон студийного уровня Roccat Torch

▪ Накладные ногти светятся с вызовом мобильного телефона

▪ Жир вызывает депрессию

▪ Кислород из лунной пыли

▪ Будет построен тоннель Нью-Йорк - Вашингтон

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Инструкции по эксплуатации. Подборка статей

▪ статья Слуга двух господ. Крылатое выражение

▪ статья Для связи с какими объектами может потребоваться использование ядра Земли в качестве антенны? Подробный ответ

▪ статья Пастернак армянский. Легенды, выращивание, способы применения

▪ статья Датчик влажности для стеклооочистителей. Энциклопедия радиоэлектроники и электротехники

▪ статья Бусы исчезают и появляются вновь. Секрет фокуса

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:





Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2025