Menu Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Мощный преобразователь напряжения 12/5 вольт по простой схеме. Энциклопедия радиоэлектроники и электротехники

Бесплатная техническая библиотека

Энциклопедия радиоэлектроники и электротехники / Преобразователи напряжения, выпрямители, инверторы

Комментарии к статье Комментарии к статье

Такой преобразователь может понадобиться для питания сильноточных 5-вольтовых схем от автомобильного аккумулятора, зарядки от него же литиевых аккумуляторов (тогда выходное напряжение придется уменьшить до 4 В); в авторском же варианте используется для питания внешнего компьютерного DVD-RW (USB) от автомобильного аккумулятора. Этот привод и сам по себе довольно сильно греется в процессе работы, поэтому охлаждать еще и микросхему линейного стабилизатора просто нечем. А импульсники знамениты своей экономичностью.

На микросхеме DD1 собраны умножитель напряжения и тактирующий генератор (рис. 1.10).

Мощный преобразователь напряжения 12/5 вольт по простой схеме
Рис. 1.10 (нажмите для увеличения)

Умножитель необходим из-за того, что в схеме используются более дешевые и распространенные полевые транзисторы с каналом n-типа. Для полного отпирания полевого транзистора с изолированным затвором и индуцируемым каналом (к этому типу относятся все транзисторы серии IRF) напряжение на его затворе нужно поднять на 3...5 В выше напряжения на стоке - так что здесь без умножителя не обойтись.

Умножитель собран на элементах С3, VD1, VD2 и фильтрующем конденсаторе С4 по типовой схеме. Для ограничения напряжения (оно может подняться до 22 В, а для микросхемы 555 напряжение выше 18 В опасно) добавлен резистор R5. Благодаря ему напряжение на конденсаторе С4 составляет около 17...18 В, этого достаточно для нормальной работы полевого транзистора и недостаточно для пробоя микросхемы. Конденсатор С3 может быть или многослойным керамическим (в виде параллелепипеда, для поверхностного монтажа), или пленочным, но не дисковым керамическим! Иначе, из-за значительного внутреннего сопротивления конденсатора, напряжение на С4 не повысится выше 15...16 В даже без резистора R5, и ключевой транзистор будет сильно греться. Конденсатор С4 может быть рассчитан на 16 В.

Собственно широтно-импульсный модулятор собран на таймере DD2. Через конденсатор С2 и транзистор VT1 на вход S таймера поступают очень короткие синхроимпульсы с выхода генератора чем они короче, тем лучше (иначе выход таймера может возбуждаться). Емкости 10 пФ вполне достаточно, ее можно даже уменьшить до 5 пФ.

Регулировка длительности выходных импульсов производится через вход REF (вывод 5 микросхемы). Длительность выходного импульса равняется времени, за которое конденсатор С5 заряжается от нуля до напряжения на этом входе, то есть при уменьшении напряжения REF длительность импульсов (и напряжение на выходе) уменьшается, при напряжении менее 1,5 В она становится равной нулю.

Принцип работы устройства

Преобразователь напряжения построен по классической схеме на полевом транзисторе VT2 и дросселе L1 В качестве обратноходового диода используется транзистор VT3 В мощных понижающих импульсниках в этом месте лучше всего ставить именно транзисторы так как ток обратного хода практически равен прямому току, и если падение напряжения на ключевом транзисторе (VT2 по схеме) легко уменьшить до минимума, то с диодами все гораздо сложнее. В итоге получается парадокс: ключевой транзистор холодный, дроссель почти не греется, зато диод как утюг! А ведь чем меньше нагрев тем выше КПД схемы, и с отводом тепла меньше проблем.

Транзистор VT3 работает в противофазе с ключевым транзистором VT2 благодаря инвертору на микросхеме DD3. Так как обратноходовой диод должен быть открыт не все время простоя ключевого транзистора, а только небольшое (иначе он будет замыкать через дроссель выход схемы) время сразу после закрытия ключевого транзистора (именно в это время импульс тока обратного хода имеет наибольшую амплитуду), в схему добавлен конденсатор С6 и для точной настройки подстроечныи резистор R8. Все остальное время транзистор VT3 работает как диод благодаря встроенному мощному защитному диоду между выводами стока и истока. То есть от замены диода транзистором хуже точно не будет.

Стабилизатор напряжения собран на стабилитроне VD3 и транзисторе VT4. Точность и величина выходного напряжения зависят только от качества и напряжения стабилизации стабилитрона. Его можно заменить микросхемой TL431.

Дроссель L1 можно намотать на каркасе трансформатора от старой радиоточки. Берем провод диаметром 1 мм (для тока нагрузки до 2 А) и мотаем до заполнения каркаса (около сотни витков). Так как дроссель работает на постоянном токе, то между пластинами обязателен диэлектрический зазор то есть засовываем все. Ш-образные пластины в одном направлении и между ними и "палочками" прокладываем 1-2 слоя газетной бумаги (или трансформаторной, если у вас есть), после чего все это дело очень хорошо сжимаем. Можно намотать дроссель и на ферритовом кольце диаметром примерно 30...40 мм, но опять-таки его лучше разрезать и снова склеить, или взять специальный разрезной сердечник (ферритовые чашки диаметром 20...30 мм и высотой 15...20 мм, примерно 50...80 витков).

Налаживание

Полностью собираем схему, не впаиваем только транзисторы VT2 и VT3. Подключаем питание напряжение на выводах питания DD2 должно быть на 4...6 В больше напряжения питания; если оно меньше убеждаемся в наличии генерации (напряжение на выходе генератора должно равняться половине питающего), уменьшаем сопротивление резистора R5, если это не помогает ставим более качественный конденсатор С3. Если напряжение питания DD2 больше 18 В увеличиваем сопротивление резистора R5. После этого впаиваем оба транзистора и уменьшаем сопротивление R8 до нуля. К выходу подключаем мощную нагрузку (рекомендуется автомобильную лампочку на 12 В, 20 Вт) и подаем питание +12 В через подключенный амперметр. Если все работает нормально, напряжение на лампочке будет примерно равно напряжению стабилизации стабилитрона, а потребляемый схемой ток будет раза в два меньше тока через лампочку (в авторском варианте 0,5 А). Теперь отключаем лампочку-нагрузку. Напряжение на выходе должно увеличиться не более чем на 0,2...0,3 В, а напряжение на входе REF DD2 должно быть в пределах 0,8...2,5 В относительно общего провода. Если оно близко к нулю, следует уменьшить емкость конденсатора С5 раза в два.

Включите-отключите нагрузку: дроссель при этом должен коротко "стукать" (это цепь обратной связи отрабатывает резкое изменение тока нагрузки), никаких свистов (самовозбуждения) быть не должно. Если возникает возбуждение скорее всего, неправильно нарисованы дорожки.

После этого можно начинать настройку "умного диода" (VT3). Медленно вращайте движок подстроечного резистора R8 потребляемый схемой ток (+12 В) начнет уменьшаться примерно на 5...10%. Этот ток раньше расходовался исключительно на нагрев корпуса транзистора VT3. Но в какое-то время может возникнуть самовозбуждение выходного каскада - потребляемый схемой ток резко возрастает в 2-3 раза. Движок R8 нужно установить в такое положение, при котором потребляемый ток уменьшился, но до возбуждения еще далеко. Снова отключите-включите нагрузку, отключите-включите питание: возбуждения выхода и свиста в дросселе (даже очень короткого!) быть не должно. Если это не так нужно чуть уменьшить сопротивление R8 и повторить провокацию.

Благодаря такой схеме включения транзистора VT3 он хоть и греется, но заметно слабее, чем хороший диод Шоттки (КД213, 1N5822). При токе нагрузки до 1...1,5 А радиаторы для обоих транзисторов не нужны, при токе до 3 А к корпусу VT3 нужно прикрутить небольшую пластинку-теплоотвод (КРЕН с такой силой греется уже при токе 0,2 А).

Вместо 1RFZ46 в авторском варианте стоят их белорусские аналоги. КП723А с сопротивлением канала 0,1 Ом и менее, транзисторы КТ315 можно заменить любыми кремниевыми структуры n-p-n. Электролиты С7 и С8 желательно набрать из нескольких соединенных параллельно меньшей емкости, параллельно им можно включить парочку пленочных или многослойных керамических конденсаторов емкостью 0,1 мкФ и более.

При повторении схемы особое внимание нужно уделить проводам питания все элементы и все провода должны быть подключены именно так, как показано на рисунке! Не экономьте на спичках, иначе замучитесь с настройкой! Дорожки, нарисованные на рисунке более толстой линией, должны быть потолще минимум 1,5...2 мм.

Авторы: Кашкаров А.П., Колдунов А.С.

Смотрите другие статьи раздела Преобразователи напряжения, выпрямители, инверторы.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Оптимальная продолжительность сна 12.11.2025

Сон играет ключевую роль в поддержании здоровья, когнитивных функций и общего самочувствия. Несмотря на широко распространенный стереотип о восьмичасовом сне, последние исследования показывают, что оптимальная продолжительность сна для большинства здоровых взрослых ближе к семи часам. Эволюционный биолог из Гарварда, Дэниел Э. Либерман, утверждает, что традиционная норма восьми часов сна - это скорее культурное наследие индустриальной эпохи, чем биологическая необходимость. По его словам, полевые исследования, проведенные в сообществах, не использующих электричество, показывают, что средняя продолжительность сна составляет 6-7 часов, что значительно отличается от общепринятого стандарта. Современные эпидемиологические данные подтверждают этот взгляд. Исследования выявили так называемую "U-образную кривую" зависимости между продолжительностью сна и рисками для здоровья. Минимальные показатели заболеваемости и смертности наблюдаются именно у людей, спящих около семи часов в сутки. ...>>

Дефицит кислорода усиливает выброс закиси азота 12.11.2025

Парниковые газы играют ключевую роль в изменении климата, а закись азота (N2O) - один из наиболее опасных среди них. Этот газ не только втрое сильнее углекислого газа в удержании тепла, но и разрушает озоновый слой. Недавнее исследование американских ученых показало, что микробы в зонах с низким содержанием кислорода активно производят N2O, усиливая глобальные климатические риски. Команда из Университета Пенсильвании изучала прибрежные воды у Сан-Диего и провела наблюдения на глубинах от 40 до 120 метров в Восточной тропической северной части Тихого океана - одной из крупнейших зон дефицита кислорода. Исследователи сосредоточились на том, как морские микроорганизмы превращают нитраты в закись азота. В ходе работы выяснилось, что существует два пути образования N2O. Один путь начинается с нитрата, другой - с нитрита. На первый взгляд более короткий путь должен быть эффективнее, однако микробы, использующие нитрат, продуцируют больше газа, поскольку этот "сырьевой" источник более д ...>>

Омега-3 помогают молодым кораллам выживать 11.11.2025

Сохранение коралловых рифов становится все более актуальной задачей в условиях глобального изменения климата. Молодые кораллы особенно уязвимы на ранних стадиях развития, когда стрессовые условия и нехватка питательных веществ могут привести к высокой смертности. Недавнее исследование ученых из Технологического университета Сиднея показывает, что специальные пищевые добавки способны существенно повысить выживаемость личинок кораллов. В ходе работы исследователи разработали особый состав "детского питания" для коралловых личинок. В него вошли масла, богатые омега-3 жирными кислотами, а также важные стерины, необходимые для формирования клеточных мембран. Личинки, получавшие эти добавки, развивались быстрее, становились крепче и демонстрировали более высокую устойчивость к стрессовым факторам. Особое внимание ученые уделили липидам. Анализ показал, что личинки активно усваивают эти вещества, что напрямую влияет на их жизнеспособность. Стерины, содержащиеся в корме, повышают устойчи ...>>

Случайная новость из Архива

Адаптивные фары следят за глазами водителя 31.07.2024

Компания Ford, один из лидеров мирового автопрома, подала заявку на патент новой технологии адаптивных фар, которые будут следовать за взглядом водителя. В соответствии с документами, опубликованными Управлением по патентам и товарным знакам США (USPTO), эти фары смогут менять направление света в зависимости от того, куда смотрит водитель.

Современные фары реагируют на движение руля, что позволяет освещать повороты, но не всегда эффективно на прямых участках дороги. Новые адаптивные фары Ford будут более точными и смогут следовать за взглядом водителя, освещая те участки дороги, куда он смотрит. Это поможет лучше освещать боковые части дороги, улучшая безопасность и позволяя раньше замечать препятствия и обочины.

Особенно полезной эта система будет на многополосных дорогах, где обычные фары могут не заметить мелкие объекты, такие как небольшие животные. Фары, следящие за взглядом водителя, смогут их вовремя обнаруживать, что значительно повысит безопасность движения.

Для реализации этой системы Ford планирует использовать технологию отслеживания движения глаз водителя. Система будет учитывать направление взгляда и головы водителя, чтобы избежать ложных срабатываний, когда водитель просто двигает головой, но продолжает смотреть в том же направлении. Датчики будут проверять, направлен ли взгляд действительно на дорогу через лобовое стекло, и только тогда фары будут менять свое направление.

Хотя идея отслеживания взгляда водителя для управления фарами не нова, ее успешное внедрение станет значительным шагом вперед в области автомобильных технологий. В 2015 году компания Opel, тогда принадлежавшая General Motors, объявила о разработке аналогичной технологии. В Европе такие инновации могут быть внедрены быстрее благодаря более гибким правилам использования современных матричных фар, в отличие от США, где эти правила были обновлены относительно недавно.

Новаторская технология адаптивных фар Ford может значительно улучшить безопасность на дорогах, делая ночное вождение более комфортным и безопасным. Это еще один пример того, как современные технологии могут улучшить повседневную жизнь и безопасность водителей.

Другие интересные новости:

▪ С сенсорным экраном - в перчатках

▪ На спутнике Юпитера возможно наличие воды

▪ Воздух стал тяжелее, килограмм полегчал

▪ Вечная флешка Machdyne

▪ Компактные автомобили научат предотвращать аварии

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Инструкции по эксплуатации. Подборка статей

▪ статья Прямоугольные координаты на картах. Основы безопасной жизнедеятельности

▪ статья На какой штат США нужно напасть, чтобы не ввязаться в войну со всем НАТО? Подробный ответ

▪ статья Лямки-пояс для рюкзака. Советы туристу

▪ статья Светомузыкальная установка Светлана. Энциклопедия радиоэлектроники и электротехники

▪ статья Зарубежные интегральные усилители низкой частоты. Энциклопедия радиоэлектроники и электротехники

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:




Комментарии к статье:

Сергей
Здравствуйте, а есть печатка на эту схемку, хочу собрать попробовать. [lol]


Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2025