Menu Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Автоматическое устройство для зарядки и восстановления аккумуляторных батарей. Энциклопедия радиоэлектроники и электротехники

Бесплатная техническая библиотека

Энциклопедия радиоэлектроники и электротехники / Зарядные устройства, аккумуляторы, гальванические элементы

Комментарии к статье Комментарии к статье

Описываемое зарядное устройство позволяет восстановить сульфатированные батареи в автоматическом режиме, или проводить формирование и профилактическую обработку исправных.

Зарядный ток отключается автоматически по достижении напряжения на зажимах аккумуляторной батареи 14,1...14,2 В. Сравнение напряжения аккумуляторной батареи с опорным напряжением происходит при отсутствии зарядного тока, что позволяет заряжать батарею до полной емкости.

Сила зарядного тока плавно регулируется от 0 до 10 А.

Устройство имеет защиту от случайных коротких замыканий выходных гнезд Х1 и Х2.


(нажмите для увеличения)

Устройство состоит из следующих основных узлов:

  • сетевого трансформатора Т1 с двухполупериодным выпрямителем на диодах VD1-VD4;
  • фазоимпульсного генератора, собранного на транзисторах VT1, VT2;
  • узла защиты от короткого замыкания на тиристоре VS1, стабилитроне VD7 и резисторе R15;
  • источника опорного напряжения, образуемого стабилитроном VD8 и конденсатором С2;
  • формирователя импульсов, собранного на транзисторах VT3, VT4;
  • узла сравнения на стабилитроне VD12 и транзисторе VT5;
  • управляющего тиристора VS2.

Работа устройства

При включении сети тумблером SA1 напряжение с выхода выпрямителя поступает на фазоимпульсный генератор (VT1, VT2), импульсы которого подаются в формирователь импульсов (VT3, VT4). При этом на его выходе формируются импульсы со стабильной амплитудой, независимой от фазы импульса генератора. Амплитуду импульсов устанавливают при настройке переменным резистором R12.

Узел сравнения (VT5, VD12) предназначен для стабильной работы тиристора VS2 независимо от температуры окружающей среды, а также для сужения пределов напряжения срабатывания автоматического отключения. При достижении напряжения заряжаемой аккумуляторной батареи 14,1...14,2 В стабилитрон VD12 закрывается и тиристор VS2 перестает пропускать зарядный ток.

В случае короткого замыкания выходных гнезд или неправильного подключения полюсов заряжаемой батареи увеличивается напряжение на резисторе RI5, что вызывает открывание стабилитрона VD7 и тиристора VS1. Тиристор, в свою очередь, шунтирует конденсатор С1 фазоимпульсного генератора.

При этом подача управляющих импульсов на тиристор VS2 прекращается и зарядный ток падает до нуля. Для восстановления зарядного тока необходимо разомкнуть и снова замкнуть контакты тумблера SA1.

Диод VD10 защищает устройство от неправильного подключения полюсов аккумуляторной батареи, а диод VD11 - от самопроизвольной ее разрядки.

При отключении электросети измерительный прибор P1 показывает значение напряжения подключенной аккумуляторной батареи.

Зарядку шестивольтовых аккумуляторных батарей производят при установке переключателя SA2 в положение "6 В".

Режим десульфатации устанавливают следующим образом. К выходным гнездам-зажимам устройства подключают аккумуляторную батарею с напряжением Ua не менее 12,2 В и соответствующим удельным весом электролита. Устанавливают зарядный ток I при положении указателя ручки переменного резистора R4 на первой трети шкалы. Зарядные импульсы длительностью 1/3 полупериода сетевого напряжения лучше установить с помощью осциллографа.

Далее определяют сопротивление разрядного резистора Rp; который подключают к выходу устройства параллельно аккумуляторной батарее:

Rp=10Uа/I3,

где Ua - напряжение аккумуляторной батареи (В), h - зарядный ток (А).

Резистор Rp должен быть мощностью не менее 15 Вт.

Аккумуляторную батарею заряжают до автоматического отключения зарядного тока. Делают это, после устранения причины сульфатации пластин.

Настройка устройства

Налаживание узла защиты от тока короткого замыкания сводится к установке на катоде стабилитрона VD7 напряжения 2,5 В подбором резистора R10. Зарядный ток при этом устанавливается около 3 А.

Установку значения напряжения, при котором происходит автоматическое отключение зарядного тока, осуществляют следующим образом. От управляющего тиристора VS2 отпаивают провод, идущий к нему от точки соединения транзистора VT5 и резистора R16. Затем к выходным гнездам-зажимам устройства подключают источник стабилизированного напряжения 14,2 В и переменным резистором R12 добиваются резкого снижения напряжения на коллекторе транзистора VT5, после чего восстанавливают соединение с управляющим электродом тиристора VS2.

Резисторы R17, R18 подбирают в зависимости от используемого микроамперметра и выбранной шкалы измерения напряжения и тока.

Приступая к испытанию устройства, к выходным гнездам-зажимам подключают нагрузочный резистор сопротивлением 25 - 50 Ом мощностью 10...20 Вт. Включают питание тумблером SA1 и измеряют напряжение на нагрузке при разных положениях движка переменного резистора R4. Плавное изменение напряжения свидетельствует о нормальной работе устройства.

Детали

Резистор R15 изготовлен из четырех скрученных вместе манганиновых проводов диаметром 0,8 мм, длина которых при сопротивлении 0,08 Ом составляет около 200 мм. Скрученный провод намотан на фарфоровую гильзу диаметром 20 мм от негодного проволочного резистора, с небольшим зазором между витками.

Магнитопровод сетевого трансформатора Т1 - типа ПЛ 27x40x58.

Обмотки трансформатора содержат: I - 674 витка провода ПЭВ-2 0,7; II - 48 витков провода ПЭВ-2 1,8;  III - 20 витков ПЭВ-2 1,8.

Резисторы R4 и R12 типа. СП2-1, R1 -МЛТ-1, остальные - МЛТ-0,25. Конденсаторы: С1 - К73П-3; С2 - К50-29.

Измерительный прибор Р1 - микроамперметр типа М-592 на ток 50 мкА. Сигнальная лампа HL1 -КМ24-105.

Автор: Шелестов И.П.

Смотрите другие статьи раздела Зарядные устройства, аккумуляторы, гальванические элементы.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Впервые преоодолена передача ВИЧ от матери к ребенку 02.01.2026

Проблема вертикальной передачи ВИЧ - от матери к ребенку - остается одной из ключевых задач глобальной медицины. Недавний отчет Всемирной организации здравоохранения (ВОЗ) демонстрирует историческое достижение: Бразилия впервые в своей истории полностью преодолела этот путь передачи вируса. Страна стала 19-й в мире и первой с населением более 100 миллионов человек, которая достигла такого результата. Достижения Бразилии основаны на комплексных медицинских программах, обеспечивающих своевременный доступ к диагностике и терапии для всех слоев населения. ВОЗ официально подтвердило, что уровень передачи ВИЧ от матери к ребенку снизился до менее двух процентов. Более 95% беременных женщин в стране получают регулярный скрининг на ВИЧ и необходимое лечение в рамках стандартного ведения беременности. Изначально программа тестировалась в крупных муниципалитетах и штатах с населением более 100 тысяч человек, а затем была масштабирована на всю страну. Такой подход позволил унифицировать ста ...>>

Нанослой германия увеличивает эффективность солнечных батарей на треть 02.01.2026

Разработка высокоэффективных солнечных батарей остается одной из ключевых задач современной энергетики. Недавнее исследование южнокорейских ученых позволило повысить производительность тонкопленочных солнечных элементов почти на 30%, что открывает новые перспективы для возобновляемых источников энергии, гибкой электроники и сенсорных устройств. Команда исследователей сосредоточилась на элементах на основе моносульфида олова (SnS) - нетоксичного и доступного материала, который идеально подходит для гибких солнечных панелей. До настоящего времени эффективность SnS-устройств оставалась низкой из-за проблем на границе контакта с металлическим электродом. В этой области возникали структурные дефекты, диффузия элементов и электрические потери, что существенно ограничивало возможности таких батарей. "Этот интерфейс был главным барьером для достижения высокой производительности", - отмечает профессор Джейонг Хо из Национального университета Чоннам. Для решения этих проблем ученые предлож ...>>

Электростатическое решение для борьбы с льдом и инеем 01.01.2026

Борьба с льдом и инеем на транспортных средствах и критически важных поверхностях зимой остается сложной и затратной задачей. Ученые из Virginia Tech разработали инновационную технологию, способную разрушать лед и иней без использования тепла или химических реагентов, что открывает новые возможности для безопасной и экологичной зимней эксплуатации транспорта. Исследователи обнаружили, что лед и иней образуют кристаллическую решетку с так называемыми ионными дефектами - заряженными участками, способными перемещаться под воздействием электрического поля. Эти дефекты являются ключом к управлению прочностью льда и его удалением с поверхностей. Когда на замерзшую поверхность подается положительный электрический заряд, отрицательные ионные дефекты притягиваются к источнику поля. Это вызывает разрушение кристаллической решетки льда, в результате чего часть льда буквально "отскакивает" от поверхности. Такой эффект позволяет удалять лед без применения внешнего тепла или химических средств ...>>

Случайная новость из Архива

Обнаружен новый вид черных дыр 01.04.2020

Астрономы при помощи космического телескоп "Хаббл" обнаружили первые доказательства нового типа черной дыры, о которой до сих пор высказывали только гипотезы. До этого открытия ученые находили только гигантские черные дыры с массой в сотни миллионов наших Солнц, либо очень "крохотные" с массой в пять солнечных. Однако промежуточного звена найти не удавалось, были только косвенные доказательства о том, что они постепенно растут, сливаясь между собой. Эти черные дыры промежуточной массы (IMBH) образуют "недостающее звено" в эволюции черных дыр. Но этот тип объектов крайне трудно найти.

В качестве отправной точки для своих исследований, ученые взяли данные из рентгеновской обсерватории Чандра NASA и X-ray Multi-Mirror Mission (Рентгеновской многозеркальной миссии) Европейского космического агентства. Эти телескопы наблюдали за длинной волны рентгеновского излучения и обнаружили мощную вспышку от неизвестного источника в 2006 году. Направив "Хаббл" на источник этих рентгеновских лучей, команда смогла определить источник излучения - он был не из центра галактики, где, как правило, находится сверхмассивная черная дыра.

Выяснилось, что источником рентгеновских лучей было звездное скопление на краю галактики. В нем рентгеновские лучи испускались, когда промежуточная черная дыра в центре поглощала ближайшую звезду. Это открытие представляет собой наилучшее свидетельство идентификации IMBH. И это открытие поможет науке ответить на многие вопросы о черных дырах всех размеров.

"Изучение происхождения и эволюции черных дыр промежуточной массы даст ответ ученым о том, как возникли сверхмассивные черные дыры, которые мы находим в центрах массивных галактик", - объясняет астрофизик Натали Уэбб из Французского университета в Тулузе.

Другие интересные новости:

▪ Жизнь в городе здоровее, чем на селе

▪ Сверхтонкий аккумулятор Glacier Battery 6100 мАч

▪ Раскрыт секрет голубых глаз хаски

▪ Сверхтонкие, легкие и гибкие панели прикосновения для мобильных применений

▪ Кому хорошо в одиночестве

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Освещение. Подборка статей

▪ статья Айседора Дункан. Знаменитые афоризмы

▪ статья Что такое невроз страха? Подробный ответ

▪ статья Агролесомелиоратор. Должностная инструкция

▪ статья Поворотное устройство антенны. Энциклопедия радиоэлектроники и электротехники

▪ статья Импульсный преобразователь напряжения от бортовой сети автомобиля. Энциклопедия радиоэлектроники и электротехники

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:




Комментарии к статье:

Тагир
Узел сравнения на стабилитроне VD12 и транзисторе VT5 у меня не заработал.Нет ли ошибки в схеме?

Андрей
Реально, узел сравнения на VT5 и VD12 никак не работает. На активной нагрузке все регулируется, а на аккумулятор ток не идет. Это узел не работает!!!

Viktor
Никто не настроил автоматическое отключение? может стабилитрон не так включен?

Борис
У меня тоже самое! Может использовать другую схему для отключения?

Александр
Не могу запустить генератор т1 т2 (делаю второй раз), лет двадцать назад. методом тыка,заменил д11 на кондёр,от Р10 и д12 на+вых д226 и р5к,катод на +, ЗАРАБОТАЛО!,недолго,р4 5к,2раза,сейчас ток впорядке,пргыгнула напруга до 18в в конце зарядки, можно сварить ак.(стбилитрон) Новую плату не могу настроить. В помощь радиолюбителю выпуск 94 стр 3 М ГАЗИЗОВ

Пётр
Собрал это устройство но оно не работает-детали все исправны. Хотелось бы знать каким образом резистор R12 будет влиять на напряжение на коллекторе транзистора VT5 если перед резистором стоит диод Д11 который не пропустит плюсовой потенциал к резистору?

Геннадий
Когда открывается Т4 резистор R12 начинает очень греться. Может он должен в ком, а не в ом?

Геннадий
Греется ли у кого резистор R12? Может там должен ком а не ом? Узел Т5 не работает.

Гость
У кого заработал блок сравнения поделитесь информацией.


Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2025