Menu English Ukrainian Russian Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Релейный стабилизатор сетевого напряжения. Энциклопедия радиоэлектроники и электротехники

Бесплатная техническая библиотека

Энциклопедия радиоэлектроники и электротехники / Стабилизаторы напряжения

Комментарии к статье Комментарии к статье

Нередко для питания, например, телевизоров, особенно в сельской местности, необходим стабилизатор, который обеспечивает номинальное выходное напряжение при глубоком снижении напряжения в сети. Кроме этого, для питания многих видов бытовой электронной аппаратуры предпочтителен стабилизатор, не вносящий искажений синусоидальной формы выходного напряжения. Стабилизатор имеет четыре ступени регулирования выходного напряжения. Это позволило существенно расширить зону стабилизации - 160.250 В. При этом выходное напряжение остается в пределах нормативов на напряжение питания телевизионных приемников цветного изображения.

Схема стабилизатора представлена на рис. 9.4.

Релейный стабилизатор сетевого напряжения

В электронный блок прибора входят два ключа на транзисторах VT1 и VT2, коммутирующие реле К1 и К2 и три пороговых устройства, каждое из которых представляет собой делитель напряжения из резисторов и стабилитрона. Первое пороговое устройство - R2, VD3, R3, второе - VD5, R4, R6, третье - R5, VD6, R6. Блок управления питается от выпрямителя на диодах VD1 и VD2 с фильтрующим конденсатором С2. Конденсаторы С3 и С4 устраняют кратковременные изменения (выбросы) сетевого напряжения. Резистор R1 и конденсатор С1 - "искрогасительная" цепь. Диоды VD4 и VD7 защищают транзисторы от напряжения самоиндукции обмоток реле, которое возникает при закрывании транзисторного ключа.

В случае идеальной работы пороговых устройств и трансформатора каждая из четырех ступеней регулирования обеспечивала бы интервал значений напряжения 198...231 В, а допустимое сетевое напряжение могло бы быть в пределах от 140 до 260 В. Однако на практике необходимо учитывать разброс параметров деталей и узлов и изменение коэффициента передачи трансформатора при изменении его нагрузочного режима. Поэтому у всех трех пороговых устройств интервалы выходного напряжения выбраны зауженными - по выходному напряжению 215 ±10 В (в идеальном случае 215 ±15 В), из-за этого, соответственно, сужается и интервал изменения сетевого напряжения до 160...250 В (рис. 9.5).

Релейный стабилизатор сетевого напряжения

При сетевом напряжении менее 185 В напряжения с выпрямителя на диодах VD1 и VD2 недостаточно, чтобы открылось хотя бы одно пороговое устройство - все три стабилитрона закрыты, а положение контактов реле соответствует показанному на схеме. При входном сетевом напряжении 160 В выходное напряжение будет равно 198 В. Напряжение на нагрузке равно напряжению сети плюс напряжение вольтодобавки, снимаемое с обмоток II и III трансформатора Т1 В интервале сетевого напряжения 185...205 В открыт стабилитрон VD5. При этом вступает в работу второе пороговое устройство. Ток протекает через обмотку реле К1, стабилитрон VD5 и резисторы R4 и R6. Этот ток недостаточен для срабатывания реле К1.

Падение напряжения на резисторе R6 открывает транзистор VT2 В результате этого срабатывает реле К2 и контактами К2.1 переключает обмотки трансформатора так, что теперь источником вольтодобавки служит только обмотка II. При сетевом напряжении в пределах 205...225 В открывается стабилитрон VD3, то есть ток протекает через первое пороговое устройство. Открывается транзистор VT1, вследствие чего закрывается второе пороговое устройство, а значит, и транзистор VT2, реле К2 отпускает якорь. Срабатывает реле К1 и переключает контакты. КМ. При таком состоянии контактов реле ток нагрузки минует обмотки II и III трансформатора, то есть вольтодобавка равна нулю. На нагрузке повторяется сетевое напряжение - 205...225 В.

В интервале сетевого напряжения 225...245 В открывается стабилитрон VD6. Это означает, что вступает в работу третье пороговое устройство и оказываются открытыми оба транзисторных ключа; включены оба реле - К1 и К2. Теперь в цепь тока нагрузки оказывается включенной обмотка III трансформатора Т1, но в противофазе с сетевым напряжением ( "минусовая" вольтодобавка). На нагрузке в этом случае также будет напряжение в пределах 205...225 В. При сетевом напряжении 250 В выходное напряжение стабилизатора увеличится до 230 В, не превышая допустимого предела 220 В +5%.

Из предыдущего описания видно, что границы напряжения ступеней регулирования определяет напряжение стабилизации стабилитронов, входящих в пороговые устройства. При налаживании границы ступеней регулирования необходимо устанавливать подборкой стабилитронов, которые, как известно, отличаются значительным разбросом напряжения стабилизации. Если окажется, что подходящего экземпляра подобрать не удается, можно использовать последовательное включение стабилитрона с одним-двумя диодами (в прямом включении). Вместо КС218Ж (VD5) можно использовать стабилитрон КС220Ж. Этот стабилитрон обязательно должен быть двуханодным. Дело в том, что в интервале сетевого напряжения 225...245 В, когда открывается стабилитрон VD6 и оказываются открытыми оба транзисторных ключа, цепь R4, VD5 шунтирует резистор R6 порогового устройства R5, VD6, R6.

Для устранения шунтирующего действия стабилитрон VD5 должен быть двуханодным. Напряжение стабилизации стабилитрона VD5 не должно превышать 20 В. Стабилитрон VD3 следует подбирать из серии КС220Ж (напряжение стабилизации равно 22 В); можно использовать цепь из двух стабилитронов - Д810 и Д811. Стабилитрон КС222Ж (VD6) - на 24 В - можно заменить цепью из стабилитронов Д810 и Д813. Транзисторы в стабилизаторе могут быть любыми из серии КТ3102. Диоды - также любые из указанных серий. Реле К1 и К2 - РЭН34, паспорт ХП4.500.000-01.

Трансформатор выполнен на магнитопроводе ОЛ50/80-25 из стали Э350 (или Э360), толщина ленты - 0,08 мм. Обмотка I (для номинального напряжения 220 В) должна содержать 2400 витков провода ПЭТВ-2-0,355. Обмотки II и III - одинаковые, по 300 витков провода ПЭТВ-2-0,9 (13,9 В). Налаживать стабилизатор нужно при включенной реальной нагрузке, чтобы была учтена реакция трансформатора Т1 на нагрузку, поскольку коэффициент передачи незначительно уменьшается при переходе от режима холостого хода к режиму полной нагрузки.

При работе только одной обмотки II коэффициент передачи будет меньше, чем на холостом ходу, и еще меньше, когда работают обмотки II и III одновременно. Когда работает только обмотка III, коэффициент передачи близок к режиму холостого хода, так как при этом происходит компенсация потерь из-за "встречного" тока в ней в интервале значений сетевого напряжения 225...250 В. Изменение коэффициента передачи вызывает незначительное - на доли вольта - изменение напряжения включения пороговых устройств. Это небольшое изменение, умноженное на коэффициент трансформации трансформатора Т1, сдвигает пределы выходного напряжения уже на несколько вольт. Вот почему необходимо установку границ ступеней регулирования проводить только с нагрузкой.

Автор: Семьян А.П.

Смотрите другие статьи раздела Стабилизаторы напряжения.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Использование Apple Vision Pro во время операций 16.03.2024

Медицинская команда больницы Кромвеля в Лондоне впервые применила Apple Vision Pro в ходе двух операций на позвоночнике. Это событие подтверждает потенциал гарнитуры в качестве медицинского инструмента, изменяющего подход к хирургической практике. Хотя сами врачи не использовали Vision Pro, операционная медсестра работала с виртуальной реальностью, используя очки во время подготовки и выполнения процедур. Гарнитура позволила просматривать виртуальные экраны в операционной, выбирать инструменты и следить за ходом операции. Программное обеспечение, разработанное компанией eXeX, специализирующейся на создании приложений на основе искусственного интеллекта для хирургии, существенно улучшило процесс оказания медицинской помощи пациентам. Использование Apple Vision Pro открывает новые возможности для разработки приложений в сфере здравоохранения, таких как клиническое образование, планирование операций, обучение и медицинская визуализация. Внедрение Apple Vision Pro в медицинскую пр ...>>

Хранение углерода в Северное море 16.03.2024

Министр энергетики Норвегии Терье Осланд объявил о запуске проекта Longship, нацеленного на создание центрального хранилища углекислого газа в Северном море. Этот амбициозный проект оценивается в $2,6 млрд и направлен на применение технологии CCS (углеродного захвата и хранения) для смягчения воздействия климатических изменений. Норвегия уже имеет опыт в области CCS благодаря успешным проектам Sleipner и Snohvit, и сейчас стремится увеличить объем углерода, запечатываемого под морским дном. План Longship предусматривает создание мощности по захвату и хранению 1,5 млн. тонн углерода ежегодно в течение 25 лет. Несмотря на позитивные перспективы, существуют опасения по поводу долгосрочных последствий такого хранения. Однако сторонники проекта утверждают, что морское хранение углерода имеет ряд преимуществ, включая минимальное воздействие на окружающую среду. Проект Longship осуществляется при участии компаний Equinor, Shell и TotalEnergies через совместное предприятие Northern Li ...>>

Выращены мини-органы из амниотической жидкости человека 15.03.2024

Международная команда ученых под руководством профессора Фань Сюлиня из Университета Чжэцзян разработала уникальный способ выращивания мини-органов из клеток, обнаруженных в амниотической жидкости человека. Этот значительный прорыв в медицине может привести к улучшению диагностики и лечения врожденных заболеваний. Органоиды, представляющие собой трехмерные клеточные структуры, имитирующие органы в меньшем масштабе, были выращены из клеток легких, почек и тонкого кишечника, найденных в амниотической жидкости. Этот метод открывает новые возможности для изучения различных состояний плода и может стать ключом к ранней диагностике и лечению врожденных дефектов. Хотя пока не проводились попытки использования этого метода в лечении, ученые надеются, что их исследования в будущем помогут бороться с серьезными врожденными заболеваниями, которые затрагивают миллионы новорожденных ежегодно. Этот прорыв может изменить практику медицинских вмешательств, позволяя диагностировать и лечить врожд ...>>

Случайная новость из Архива

Настенный умный аккумулятор для дома 14.05.2015

Американская автомобильная компания Tesla Motors Inc., ориентированная на производство электромобилей, представила перезаряжаемые литий-ионные аккумуляторы для дома. Накопители позволят хранить солнечную энергию в достаточном для ночной электрификации дома или офиса объеме, сообщает The Wall Street Journal.

Получившие название Powerwall настенные аккумуляторы компания, базирующаяся в Кремниевой долине, презентовала в четверг, 30 апреля. Прибор представляет собой короб высотой 1,3 метра, длиной 86 сантиметров и шириной примерно 18 сантиметров. Его можно прикрепить к стене дома или гаража. Помимо литий-ионного накопителя в нем также есть встроенный компьютер.

Рассчитанные на 10 лет "умные" аккумуляторы будут выпускаться в двух видах: на 7 и 10 киловатт-часов. Цена меньшей модели составляет три тысячи долларов и не включает стоимость установки. Продажи начнутся летом, отмечается на сайте производителя.

Гендиректор и глава совета директоров Tesla Motors, изобретатель Илон Маск, который, помимо этого, является основателем компаний SpaceX и PayPal, рассказал, что целью разработчиков было "полностью изменить мировую инфраструктуру потребления энергии".

Эксперты признали достоинства новинки, несмотря на ее стоимость, пишет The Washington Post. "Если благодаря Tesla у потребителей появится эффективная система хранения электроэнергии дома, это будет куда более ценно и принесет самой компании больший доход, чем все ее автомобильные разработки", - говорит аналитик Карл Брауер (Karl Brauer), слова которого приводит Detroit Free Press.

По замыслу разработчиков, накопитель Powerwall будет способствовать полному отказу от топлива. Для этого достаточно оснастить крышу своего дома солнечными панелями и пересесть на электромобиль, считают в компании.

Солнечные панели значительно удешевляют стоимость электроэнергии для конечного потребителя, однако основной проблемой их использования остается то, что работают они, по сути, только в светлое время суток.

Другие интересные новости:

▪ Искусственный лист на основе вольфрама

▪ Баржа с водородной электротягой

▪ ARCHOS выпустил сверхкомпактный аудиоплеер с 3 Гб жестким диском

▪ Новый импульсный регулятор

▪ Гибридный квадроцикл Krampus

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Важнейшие научные открытия. Подборка статей

▪ статья Звук в автомобиле. Искусство аудио

▪ статья Что изначально называли словом погода? Подробный ответ

▪ статья Работник сторожевой охраны. Типовая инструкция по охране труда

▪ статья Медь. Энциклопедия радиоэлектроники и электротехники

▪ статья Угадывание орла или решки. Секрет фокуса

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:





All languages of this page

Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2024