Menu Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Автоматический регулятор сетевого напряжения. Энциклопедия радиоэлектроники и электротехники

Бесплатная техническая библиотека

Энциклопедия радиоэлектроники и электротехники / Регуляторы тока, напряжения, мощности

Комментарии к статье Комментарии к статье

Глубокие колебания напряжения в бытовой электросети вызывают, как правило, выход из строя дорогостоящей бытовой техники. Попытка решить эту проблему с помощью устройства, предложенного А. Каганом в [1], из-за некоторых неточностей в принципиальной схеме и небольшой мощности подключаемой нагрузки не увенчалась успехом.

Предлагаемый автоматический регулятор сетевого напряжения (АРСН), на мой взгляд, лишен этих недостатков и является "рабочей" версией [1].

Технические характеристики:

  • Отклонение напряжения на входе АРСН.......140...270 В, 50 Гц
  • Напряжение на выходе АРСН.......200...230 В, 50 Гц
  • Номинальный ток нагрузки/мощность.......5 А/1,1 кВт
  • Пусковой ток/пусковая мощность при длительности пуска 1 мин.......10 А/2,2 кВт
  • Режим работы.......Непрерывный
  • Защита устройства с нагрузкой.......Плавкий предохранитель на ток 13 А
  • Тип подключаемой нагрузки.......Бытовой холодильник

Принципиальная схема АРСН показана на рис.1.

Автоматический регулятор сетевого напряжения
(нажмите для увеличения)

Отличительной особенностью предлагаемого устройства является дополнительная пятая ступень регулирования, более мощный трансформатор и электронные ключи, выполненные на составных транзисторах. Схема дополнена индикатором выходного напряжения, выполненного на светодиоде VD2. Принцип действия не отличается от описанного в [1].

Детали и конструкция

Мощность вольтодобавочного трансформатора Тр определяют из следующих соображений.

Для пуска холодильника необходима мощность:

Sn=InUn,

где In - пусковой ток 10 А; Un - номинальное напряжение сети 220 В.

Sn=10 Ах220 В=2200 ВА.

Необходимое напряжение вольтодобавки при посадке в сети до 140 В определяют исходя из минимально допустимого напряжения на входе электроприемника (холодильника), равного 198 В:

Uвд=198 Вх140 В=58 В.

При этом мощность трансформатора вольтодобавки равна

Sтр=58 Вх10 А=580 ВА.

Учитывая, что пусковой режим является кратковременным, Sтр может быть выбрана в пределах 400...600 ВА.

Трансформатор изготовлен из ленточной электротехнической стали, намотанной в сердечник тороидального типа со следующими габаритами: наружный диаметр 176 мм, внутренний диаметр 120 мм, высота сердечника 90 мм, эффективное сечение магнитопровода примерно 25 см2.

Обмотки 1-2 содержат 370 витков провода D0,71 мм; 3-4 55 витков провода D1,12 мм; 4-5 и 5-6 - по 49 витков провода D1,12 мм. Все обмотки намотаны проводом ПЭТВ-2 или ПЭВ-2.

Диаметр магнитопровода выбран таким, чтобы сетевая обмотка (1-2) уложилась в один слой, остальные обмотки наматывают поверх сетевой виток к витку. Изоляцию между обмотками выполняют лакотканью в один слой или прорезиненной изоляционной лентой.

В качестве трансформатора Тр можно использовать промышленный трансформатор типа ТБС 3-0,4УЗ, при этом обмотки 1-2 содержат 390 витков проводом D0,63 мм; 3-4 - 58 витков, а 4-5-6 - по 53 витка проводом D1,09...1,12 мм. Тип провода тот же.

Можно применить в качестве Тр два включенных в параллель телевизионных трансформатора ТС-250. В этом случае сетевые обмотки остаются прежними, а на полукатушках наматывают обмотки 3-4-5-6 по схеме, показанной на рис.2, которые делят пополам.

Автоматический регулятор сетевого напряжения

Количество витков определяют после намотки контрольной обмотки. Диаметр провода для вторичных обмоток 1,0...1,03 мм. В любом случае напряжение на обмотке 3-4 должно быть 32,5 В, на обмотках 4-5, 5-6 - по 29,5 В. Допускается отклонение ±0,5 В.

Реле К1, К3 типа РП-2М003УХЛ4Б, с 3 группами переключающих контактов, сопротивление обмотки 300 Ом, напряжение 24 В.

Реле К2 типа РП21М-УХЛ4, с 4 группами переключающих кон- тактов с сопротивлением обмотки 250 Ом, напряжением также 24 В.

Все контакты, для увеличения переключающей мощности включены в параллель (рис.3). Перед монтажом контакты реле регулируют для обеспечения синхронности переключения.

Автоматический регулятор сетевого напряжения

Печатную плату изготавливают любым способом (рис.4), расположение элементов показано на рис.5.

Автоматический регулятор сетевого напряжения

Автоматический регулятор сетевого напряжения

Вариант сборки конструкции показан на рис.6, при этом группы стабилитронов VD5, VD7, VD9, VD10 на плату не устанавливают.

Автоматический регулятор сетевого напряжения

Наладка Вход АРСН подключают к 9-амперному ЛАТРу, дополнительно на вход и выход АРСН подключают вольтметры переменного тока со шкалой 0...300 В, классом точности 0,5 или 1,0. Вольтметры лучше применять со стрелочной шкалой. Впаивают в схему первую группу стабилитронов (VD5) в составе КС527А + КД521 (последний включают в прямом направлении). Напряжение на ЛАТРе поднимают с нуля. При напряжении на входе АРСН 140 В на выходе должно быть не ниже 198 В. При дальнейшем повышении напряжения на входе АРСН (примерно 162 В) должен пробиться стабилитрон VD5, вызвав срабатывание реле К1. При этом напряжение на выходе до момента срабатывания реле К1 должно быть 230 В, после срабатывания - не менее 200 В. Откорректировать эти значения можно включая в 1-ю группу стабилитронов кремниевые диоды в прямом направлении. После этого набор VD5 закрепляют на плате.

Впаивают в схему 2-ю группу стабилитронов (VD9) в составе КС527А + КС133А. Поднимают напряжение на ЛАТРе до срабатывания реле К1, затем реле К3. Проверяют напряжения: до момента срабатывания реле К3 напряжение на выходе должно быть 230 В, после срабатывания не менее 200 В. Эти значения корректируют аналогично 1-й группе.

Впаивают в схему 3-ю группу стабилитронов (VD7) в составе КС527А + КС175А + КД521. Поднимая напряжение на ЛАТРе, добиваются срабатывания последовательно К1, К3, затем К2 (при срабатывании К2 реле К3 должно отключиться). При срабатывании К2 напряжение на выходе АРСН должно изменяться аналогично реле К3.

В последнюю очередь впаивают 4-ю группу стабилитронов (VD10) в составе КС527А + Д814Д + КД521. Поднимая напряжение на ЛАТРе с нуля, проверяют последовательность срабатывания реле К1, К3, К2 (К3 отключается). Повторное срабатывание К3 должно произойти при напряжении на выходе АРСН 236...240 В, после срабатывания - 200 В. Подгонку осуществляют аналогично выше изложенному.

Примерные напряжения на входе АРСН, вызывающие срабатывания реле, и соответствующие им группы стабилитронов: 162,4 В - К1, VD5; 181,4 В - К3,VD9; 202,8 В - К2, К3, VD7; 236 В - K3, VD10.

Проверяют работоспособность АРСН под нагрузкой. Нагрузкой может быть стандартный электронагревательный прибор мощностью 1,25 кВт. Напряжение изменяют на входе тем же ЛАТРом (ток нагрузки 5,7 А). Отклонение напряжения под нагрузкой по сравнению с наладочным не должно превышать 3% (для трансформатора с тороидальным сердечником).

Детали и их возможные замены Предохранитель . - используется типа ДВП-4, из плавкой вставки (любого номинала) извлекают существующий проводник, взамен впаивают медную проволоку D0,25 мм. Ток срабатывания такого предохранителя должен быть 13 А. Остальные детали могут быть любого типа в соответствии со следующими требованиями: VD1 - Iпр=0,5...1 А, UбР=500 В; VD2 - светодиод любого типа, цвет свечения по выбору; VDЗ, VD4 - Iпр=0,5...1 А, Uбр=100 В; VD6, VD8, VD11 - импульсные КД509А, КД510А, КД513А.

Для подгонки групп стабилитронов VD5, VD7, VD9, VD10 можно использовать любые типы кремниевых диодов.

Корпус изготавливают из листовой стали или алюминия толщиной 1,5...2 мм. Для подключения нагрузки используют розетку для скрытой проводки (рис.6).

При включении необходимо соблюдать последовательность: вначале включают АРСН, а затем к нему подключают нагрузку. Кроме этого, желательно сделать ревизию подводящей электросети - для подключения АРСН лучше установить "евророзетку", а сечение подводящих проводников должно быть не менее 2,5 мм2.

Литература:

  1. Каган А. Электронно-релейный стабилизатор напряжения//Радио. - 1991. №8. - С.35.

Автор: Д.Г. Богадица

Смотрите другие статьи раздела Регуляторы тока, напряжения, мощности.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Кислотность океана разрушает зубы акул 03.10.2025

Мировые океаны выполняют важнейшую функцию - они поглощают около трети углекислого газа, выбрасываемого в атмосферу. Это помогает замедлять темпы глобального потепления, но имеет и обратную сторону. Растворяясь в воде, CO2 образует угольную кислоту, которая повышает концентрацию водородных ионов и приводит к снижению pH. Вода становится более кислой, а последствия этого процесса уже заметны для морских экосистем. Средний показатель кислотности океана сейчас равен примерно 8,1, тогда как еще недавно за условную норму брали значение 8,2. По прогнозам, к 2300 году уровень может упасть до 7,3 - это сделает океан почти в десять раз кислее нынешнего состояния. Для обитателей морей подобные изменения означают не просто сдвиг химического равновесия, а реальную угрозу физиологическим процессам, начиная от формирования раковин у моллюсков и заканчивая охотничьим поведением акул. Чтобы выяснить, как именно кислотная среда отражается на зубах акул, группа немецких исследователей провела эксп ...>>

Почтовый космический корабль Arc 03.10.2025

Космические технологии становятся частью инфраструктуры, способной повлиять на логистику, медицину и даже военную сферу. Идея использовать орбиту как глобальный склад для срочных поставок звучала еще недавно как научная фантастика, но стартап Inversion пытается превратить ее в практическое решение. Компания Inversion появилась в начале 2021 года благодаря Джастину Фиаскетти и Остину Бриггсу, которые на тот момент были студентами Бостонского университета. Их замысел состоял в том, чтобы сделать возможной доставку грузов не только через спутниковые сети данных, но и в буквальном смысле - физических предметов. В основе лежит простая мысль: если космос обеспечивает доступ к любой точке Земли, то и грузы должны перемещаться тем же маршрутом. Уже за три года работы команда из 25 специалистов успела построить демонстрационный аппарат "Ray". Его запуск состоялся в рамках миссии SpaceX Transporter-12. Устройство весом 90 килограммов проверяло ключевые технологии Inversion, включая двухком ...>>

Лазерное обогащение урана 02.10.2025

Ядерная энергия остается одним из ключевых источников стабильного электричества, особенно для стран с растущими потребностями в энергоснабжении. Однако обеспечение бесперебойных поставок топлива для атомных станций требует современных технологий обогащения урана, которые одновременно эффективны и безопасны. Американская компания Global Laser Enrichment (GLE) делает значительный шаг в этом направлении, завершив масштабное тестирование лазерной технологии обогащения урана. Демонстрационная программа была проведена на объекте в Уилмингтоне, Северная Каролина. Тестирование технологии SILEX (Separation of Isotopes by Laser EXcitation), разработанной австралийской Silex Systems, стартовало в мае 2025 года и продлится до конца года. В ходе экспериментов компания планирует получить сотни фунтов низкообогащенного урана (LEU), который может быть использован в качестве топлива для атомных электростанций. GLE была создана в 2007 году для коммерциализации лазерных методов обогащения урана в С ...>>

Случайная новость из Архива

Самоконструирующиеся системы 14.07.2000

Исследователи Ход Липсон и Джордан Поллак решили поэкспериментировать с самоконструирующимися системами. В качестве принимающего решения устройства использовались нейронные сети и генетические алгоритмы.

Для упрощения поставленной задачи (система должна была путем последовательных экспериментов создать устройство, которое смогло бы передвигаться на одной ноге с помощью одного электромотора) доступные элементы ограничивались цилиндрами разной длины и шаровыми сочленениями. Мотор мог передвигать цилиндры только линейно.

Поскольку нейронные сети способны к самообучению, то путем последовательных приближений постепенно получались прототипы, максимально приспособленные для выполнения задачи. Для проверки функционирования робота использовался 30-принтер, последовательно накладывающий слои термопластика, формирующие каркас устройства.

После работы принтера получался готовый к эксплуатации робот, в который требовалось только вставить мотор. Результат превзошел все ожидания, однако созданные конструкции принципиально различались между собой: одна из них отталкивалась ногой, другая ползала, складываясь пополам, а третья вообще передвигалась боком.

Другие интересные новости:

▪ Барабанное ОЗУ для квантового компьютера

▪ Высокоскоростной счетчик-таймер-анализатор частоты PM6690

▪ Крупноформатный CMOS датчик изображения Sony IMX661

▪ Программатор памяти BK PRECISION 848

▪ Спрос на LCD-панели возрастает

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Личный транспорт: наземный, водный, воздушный. Подборка статей

▪ статья Грабли из бросовых деталей. Советы домашнему мастеру

▪ статья Почему человеческие слезы могут иметь разный химический состав? Подробный ответ

▪ статья Лесной орех. Легенды, выращивание, способы применения

▪ статья Полировка железа. Простые рецепты и советы

▪ статья Самодельная сферическая линза. Физический эксперимент

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:





Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2025