Menu Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Мощный стабилизатор напряжения для ветрогенератора. Энциклопедия радиоэлектроники и электротехники

Бесплатная техническая библиотека

Энциклопедия радиоэлектроники и электротехники / Альтернативные источники энергии

Комментарии к статье Комментарии к статье

Прочитав в РА 4/2002 статью "Стабилизация сетевого напряжения на селе", решил дать описание своего варианта стабилизатора, который вот уже около трех лет верой и правдой совместно с ветрогенераторной установкой практически круглый год обеспечивает меня электричеством. Он может также использоваться и для стабилизации напряжения в обычной сети.

При постройке ветрогенераторной установки на базе асинхронного электродвигателя с короткозамкнутым ротором возникла необходимость в мощном трехфазном стабилизаторе напряжения мощностью более 2 кВт. Напряжение на генераторе "прыгало" при сильном ветре до 500 В, а при слабом опускалось до 100 В. В итоге были разработаны и испробованы несколько типов стабилизаторов разной конструкции и сложности. Самой простой и надежной в работе оказалась конструкция однофазного стабилизатора мощностью 2 кВт, но при небольших доработках его можно переделать в трехфазный практически на любую мощность (до 32 кВт!).

Главным достоинством стабилизатора является большая мощность, высокий КПД, относительно низкая стоимость, широкий диапазон регулируемых напряжений. К недостаткам относится достаточно большая инерционность, из-за чего невозможно компенсировать быстрые изменения напряжения. Такой недостаток легко устраняется конструкцией самого ветрогенератора.

Принцип действия стабилизатора основан на изменении числа витков регулируемого трансформатора (ЛАТРа) с помощью следящего электромеханического устройства, структурная схема которого показана на рис.1.

Мощный стабилизатор напряжения для ветрогенератора
(нажмите для увеличения)

Напряжение с генератора или сети поступает на регулируемый автотрансформатор, ползунок которого перемещается с помощью электромотора с червячным редуктором. С автотрансформатора снимается напряжение для питания нагрузки, блока питания устройства, а также на выпрямитель следящего устройства (устройства управления УУ). После обработки поступившего напряжения подается сигнал на включение-выключение электромагнитных ключей, которые управляют работой электромотора. При этом индикаторы показывают величину выходного напряжения.

Блок питания обеспечивает устройство нужными напряжениями питания: для индикаторов, электрических ключей и мотора +18 В для устройства управлениях +5 В.

Электрическая принципиальная схема стабилизатора показана на рис.2.

Мощный стабилизатор напряжения для ветрогенератора

Технические характеристики стабилизатора:

  • Максимальная выходная мощность.......2000 Вт
  • Напряжение стабилизации.......220 В
  • Диапазон изменения входного напряжения.......100...300 В
  • Диапазон изменения выходного напряжения.......210...230 В
  • Время установки напряжения на выходе стабилизатора при изменении входного напряжения на 10 В.......0,2...0,4 с
  • КПД.......96%

Переменное напряжение через концевые выключатели SQ1, SQ2 поступает на автотрансформатор Т1. С движка автотрансформатора напряжение снимается на питание нагрузки, трансформатора блока питания и на диодный мост V1-V4. C диодного моста выпрямленное напряжение поступает на делитель R1-R4. Если напряжение на выходе автотрансформатора в пределах 210...230 В, то транзистор V9 закрыт, а транзистор V7 открыт и на выходах элементов DD1.2 и DD1.5 присутствует лог."0", транзисторы V10 и V11 закрыты, реле К1 и К2 обесточены, двигатель М1 обесточен и светится индикаторная лампа HL1 "Норма". В таком состоянии устройство находится в дежурном режиме до тех пор, пока напряжение на автотрансформаторе не выйдет за установленные рамки. При повышении напряжения выше 230 В открываются стабилитрон V8 и транзистор V9, на выводе 10 элемента DD1.5 появляется лог."1" и открывает транзистор V11. Срабатывает реле К2, своими контактами К2.1 отключает лампу HL1, а контактами К2.2 зажигает лампу HL2 "Много".

Контактами К2.3 включает двигатель М1, который передвигает ползун автотрансформатора до тех пор, пока напряжение на ползуне не станет меньше 230 В. При этом напряжение на стабилитроне V8 станет меньше напряжения стабилизации, транзисторы V9 и V11 закроются, реле обесточится, лампа HL2 погаснет, а HL1 загорится. Контакты К2.3 переключатся в исходное положение и замкнут обмотку якоря накоротко, вследствие чего будет произведено быстрое торможение пол- зуна. Если напряжение станет меньше 210 В, то стабилитрон V5 закроет транзистор V7, на выводе 4 элемента DD1.2 появится высокий уровень, который откроет транзистор V10 и включит реле К1. При этом погаснет лампа HL1 и загорится лампа HL3 "Мало". Контактами К1.3 включится электродвигатель М1 и увеличит напряжение на автотрансформаторе до тех пор, пока не откроется стабилитрон V5. После чего транзистор V7 откроется, а V10 закроется. Обесточится реле К1, погаснет лампа HL2, и загорится HL1. Контакты К1.3 переключатся, и двигатель М1 быстро затормозит.

Если напряжение на генераторе сильно увеличится или уменьшится (300 и 100 В соответственно), то ползун нажмет концевой выключатель SQ1 (при напряжении 300 В) или SQ2 (при напряжении 100 В) и подача напряжения полностью прекратится, при этом будет гореть пампа HL4 "Авария питания". Снять аварию можно только после того как будет устранена причина аварии и полностью отключена нагрузка путем нажатия на 5 секунд кнопки SB1 "Сброс аварии". И только после того, как напряжение на стабилизаторе полностью установится, можно включить нагрузку. Элементы R10, С2 и R11, C5 необходимы для устранения "влияния" двигателя и реле во время коротких скачков напряжения.

Кнопками SB2 и SB3 можно управлять стабилизатором вручную, только при этом нужно переключить тумблер SB4 в положение "Ручное управление". Блок питания построен по стандартной схеме и в пояснении не нуждается. Единственное, что нужно пояснить, так это роль диода V16. Он выполняет функцию фильтра, т.е. уменьшает влияние реле и двигателя на работу устройства управления.

Детали. В стабилизаторе можно использовать сопротивления МЛТ, ОМЛТ мощностью 0,25 Вт. Резисторы R1, R2 типа МЛТ мощностью 2 Вт. Диоды V1-V4, V12-V15 любые на рабочее напряжение не ниже 400 B и обратный ток 1 А. Реле ТКЕ54ПД1 с обмоткой на 24 В, электродвигатель с червячным редуктором взят от стеклоочистителя автомобиля ГАЗ-53. Трансформатор Т2 любой с выходным напряжением 18 В и мощностью 120 Вт.

Микросхема К155ЛН1 или К133ЛН1. Транзисторы V7-V9 типов КТ315В, КТ312Б, КТ3102; V10, V11 типов КТ815А, КТ817А. Концевые выключатели Д701. Кнопки SB1-SB3 любые с автовозвратом. Тумблер SB4 типа МТ1, МТ2. Подстроечные сопротивления типа СП3-1Б. Конденсаторы С1, С5, С7 типов К21-8, КЛС и т.д., С2-C3 типа К10-7В; С4 типа К50-3, К50-3В на напряжение 50 В; С6 типа К50-18, К50-24 емкостью 8000 мкФЧ50 B. Лампы накаливания КН24-90, КХЛ4. Неоновая лампа типа ИН1, ИН2 или любая другая.

Для изготовления автотрансформатора нужно взять сталь из статора 3-киловаттного асинхронного электродвигателя и обмотать двумя-тремя слоями лакоткани. После чего намотать плотно виток к витку изолированный медный провод диаметром 1,5 мм. Оставшийся конец провода хорошо заизолировать и приклеить к трансформатору клеем "Момент" или "БФ2". Отвод сделать от последней трети витков. В верхней части трансформатора, где будет двигаться ползун, с помощью наждачной бумаги уберите слой лака. После чего залейте всю конструкцию нитролаком, кроме, конечно, зачищенного участка, и дайте лаку полностью высохнуть. Пока трансформатор сохнет выпилите из гетинакса или плексигласа чуть больше диаметра трансформатора основание и крышку. В крышке сделайте отверстие по центру и установите мотор с редуктором. На вал редуктора наденьте через изоляционную трубку ползунок. Сам ползунок взят из ЛАТРа типа ПОСН-2-220-82, только пришлось немного удлинить поводок.

Теперь поставьте трансформатор на основание, наденьте сверху крышку и скрепите все шпильками. Вставьте трансформатор по центру и укрепите его с боков резиновыми вставками. Концевые выключатели установите на верхней крышке так, чтобы ползунок приводил их в действие. SQ1 нужно установить в самом конце намотки, SQ2 - в конце первой трети намотки. Будьте предельно внимательны, когда будете зачищать место для поводка, чтобы не замкнуть витки. Зачищать нужно только сверху провода, после чего обдуйте трансформатор сжатым воздухом под давлением 3...3,5 кгс/см2. Автотрансформатор готов! Как уже было сказано выше, трансформатор нужно мотать проводом марки ПЭВ1 или ПЭЛ плотно виток к витку по внутреннему диаметру, а снаружи укладывать с равномерным шагом в один слой.

Наладка. Прежде всего проверьте качество монтажа и правильность всех соединений. Удалите из держателей предохранители, подклейте к выходу нагрузки вольтметр и включите автотрансформатор в штатную сеть 220 В. Трансформатор при правильной сборке работает тихо, практически бесшумно.

Вращая за якорь двигатель, установите по вольтметру напряжение 220 В. Отключите стабилизатор от сети и поставьте на место предохранители. Переведите тумблер "Ручной/автоматический" в положение "Ручной". Движок резистора R2 установите в нижнее по схеме положение, а R4 - в верхнее. Подключите питание и с помощью кнопок SВ2 и SB3 установите по вольтметру напряжение 250 В.

Переведите тумблер SВ4 в положение "Автоматический" и вращением ручки R2 добейтесь срабатывания устройства на верхнем пределе. Переключите снова SВ4 в положение "Ручной" и установите по вольтметру напряжение на выходе 210 В. Переведите SB4 в положение "Автоматический" и подстроечником R4 добейтесь срабатывания устройства на нижнем пределе. Теперь можно проверить работоспособность стабилизатора по своему прямому назначению. Подключите к зажимам "Нагрузка" лампу мощностью в 1 кВт, и стабилизатор должен "отреагировать" на нагрузку переводом ползунка в другое положение. Теперь путем многократного быстрого включения-выключения лампы убедитесь, что двигатель не "дергается", в противном случае подберите точнее конденсаторы С2 и С3.

Переведите тумблер в положение "Ручной" и по вольтметру установите напряжение 100 В. Подведите концевой выключатель SQ1 до срабатывания и укрепите его. Нажмите одновременно кнопки SB1 и SB5 и установите напряжение 300 В. Переведите концевик SQ2 до срабатывания и укрепите его в этом положении. Нажмите кнопки SB1 и SB2, установите по вольтметру напряжение 220 В и переведите тумблер в положение "Автоматический". Устройство полностью готово к работе! Можно подключать к генератору.

При регулировке и наладке устройства будьте внимательны и осторожны, т.к. элементы схемы находятся под опасным для жизни человека напряжением! После наладки и подгонки стабилизатора установите его в ящик подходящих размеров. На переднюю панель выведите индикаторные лампы, вставленные в глазки. НL1 зеленого цвета, HL2 и НL3 - желтого цвета, НL4 красного цвета. На переднюю панель также следует вывести кнопки SB1-SB3 и тумблер SB4. Плату с установленными деталями (монтаж навесной и выполнен проводом ПЭВ1 диаметром 0,1...0,2 мм) установите на боковой стенке регуляторами наружу. 3ажимы подключения генератора и нагрузки рекомендую вывести на боковые стенки.

Шкаф, ветровую установку и генератор нужно заземлить. Сопротивление заземления должно быть не более 2 Ом.

Перечень элементов:

Мощный стабилизатор напряжения для ветрогенератора

Реле подбирать по минимальному току срабатывания.

Трансформатор должен иметь 418 витков с отводом от 280 витка, считая снизу. На его изготовление нужно примерно 210 метров провода.

Литература:

  1. Дробница Н.А. Автоматика в быту. - К.: Техника, 1984.
  2. Терещук Р.М, Терещук К.М., Седов С.А. Полупроводниковые приемно-усилительные устройства. - К.: Наукова думка, 1987.
  3. Бунин С.Г., Яйленко Л.П. Справочник радиолюбителя-коротковолновика. - К.: Техника, 1984.
  4. 3ызюк А.Г. Стабилизация сетевого напряжения на селе//Радіоаматор. - 2002. №12. - С.20.

Автор: В.В. Чирка

Смотрите другие статьи раздела Альтернативные источники энергии.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Открыты нейронные механизмы кашля и чихания 02.10.2024

Хронический кашель представляет собой сложное и трудноизлечимое состояние, которое требует эффективных терапевтических подходов. На сегодняшний день наибольшую популярность имеют опиаты, такие как кодеин, но их побочные эффекты, включая риск привыкания, ограничивают возможность их использования. В таких случаях, особенно при тяжелых аллергических реакциях или вирусных инфекциях, кашель может достигать такой силы, что пациенты теряют сознание. Это подчеркивает необходимость поиска более безопасных и эффективных методов лечения. Недавнее исследование группы ученых из Сент-Луиса внесло ясность в нейронные механизмы, ответственные за кашель и чихание. Исследование показало, что существуют специфические группы нервных клеток, отвечающие за эти рефлексы. Нейроны, регулирующие чихание, располагаются в носовых ходах, в то время как нейроны, ответственные за кашель, находятся в трахее. Каждая из этих групп нейронов имеет свою механику активации и отправляет сигналы в ствол мозга, где инициир ...>>

Живопись точной физики 02.10.2024

Известная картина Винсента Ван Гога "Звездная ночь" продолжает вдохновлять ученых и искусствоведов благодаря своим уникальным особенностям. Новый детальный анализ этого произведения искусства показал, что в нем можно увидеть поразительное сходство с "скрытой турбулентностью" в атмосфере Земли. Это открытие подчеркивает глубину понимания природных процессов, которое обладал культовый художник. Недавние исследования подтверждают, что "Звездная ночь" гораздо более интересна, чем кажется на первый взгляд. Турбулентное небо на картине, полное закрученных вихрей и ярких звезд, демонстрирует удивительные аналогии с невидимыми процессами динамики жидкостей, происходящими в реальной атмосфере. Ученые, проанализировав мазки и цветовые переходы на картине, обнаружили поразительное соответствие между художественными элементами и физическими явлениями. Соавтор исследования Юнсян Хуан, специалист в области гидродинамики и океанографии из Университета Сямэня в Китае, отметил: "Картина раскрывае ...>>

Зубная нить способна предотвратить проблемы с сердцем 01.10.2024

Здоровье полости рта играет важную роль не только в общем состоянии организма, но и в профилактике серьезных заболеваний. Последние исследования подтверждают связь между состоянием десен и сердечно-сосудистыми заболеваниями. В частности, пародонтит, распространенная инфекция десен, может оказаться более опасным, чем мы думали ранее. Исследование, проведенное учеными из Университета Хиросимы, обнаружило интересную связь между пародонтитом и фибрилляцией предсердий, что подчеркивает необходимость тщательной гигиены полости рта. Пародонтит - это воспалительное заболевание десен, которое может привести к их разрушению и даже потере зубов. Он характеризуется длительным воспалением, что, как показали исследования, может способствовать развитию других заболеваний, включая сердечно-сосудистые. Фибрилляция предсердий, или нерегулярное сердцебиение, является одним из таких состояний, и исследование показало, что воспалительные процессы, связанные с пародонтитом, могут играть в этом значительн ...>>

Случайная новость из Архива

Энергия из бумаги 30.10.2007

Ученые из США предлагают печатать батарейки на листах бумаги.

Ученые из Ренсселаеровского политехнического института (США) создали батарейку, которая выглядит как листок черной бумаги. В сущности, это и есть листок бумаги, поскольку ее основа сделана из волокон целлюлозы. На эту основу примерно тем же методом, что и при работе принтера, были нанесены электроды - слои углеродных нанотрубок. А саму бумагу смочили электролитом, так называемой ионной жидкостью - расплавленной солью. Ионная жидкость не содержит ни капли воды, она не испаряется и не замерзает, поэтому батарейку удается использовать при температурах от +150 до - 70°С.

"Эту батарейку можно сгибать, складывать, сминать, резать на кусочки, и она не потеряет своих свойств. А можно сложить листки в стопку и получить очень мощную батарейку. Кстати, мы сделали не только батарейку, но и конденсатор, способный создавать большую плотность тока, - говорит один из участников работы профессор Роберт Линхардт. - Компоненты батарейки связаны друг с другом на молекулярном уровне, это очень умная бумага. Кроме того, можно вообще обойтись без электролита - его заменит кровь, пот или моча если такая батарейка станет источником питания для устройства, вживляемого в тело человека".

Другие интересные новости:

▪ Сверхпроводник без ограничений

▪ Фотонный чип, преобразующий волны с высокой эффективностью

▪ Лазерный проекционный дисплей для автомобиля

▪ Запах слева и справа

▪ Карта microSD 400 ГБ

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Видеотехника. Подборка статей

▪ статья Классификация чрезвычайных ситуаций. Основы безопасной жизнедеятельности

▪ статья Кого и за что награждают премией Дарвина? Подробный ответ

▪ статья Вздутие живота. Медицинская помощь

▪ статья Радиосоединение двух факсов. Энциклопедия радиоэлектроники и электротехники

▪ статья Феноменальная память. Секрет фокуса

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:





Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2024