Menu Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Автоматизация работы и защита от перегрузок электродвигателей насосов мощностью 180...250 Вт. Энциклопедия радиоэлектроники и электротехники

Бесплатная техническая библиотека

Энциклопедия радиоэлектроники и электротехники / Электродвигатели

Комментарии к статье Комментарии к статье

Незаменимыми помощниками садоводов и огородников (при наличии рядом расположенного водоема или колодца) являются электронасосы мощностью 180...250 Вт типа "Малыш", "Струмок". Но иногда случаются неприятности и с этими трудягами: выход из строя из-за несоответствия нормам сетевого напряжения, перегрева обмотки статора электродвигателя, заклинивания ротора и, как следствие, повышения до недопустимого тока через обмотку статора, отсутствие воды в водоеме или ее мутность.

Практически от всех бед спасет вашего друга разработанная мной схема автоматического управления и защиты от предельно допустимых режимов работы электронасосов мощностью 180...250 Вт (рис.1). На первый взгляд схема очень сложная, но это не так. В схеме применены цифровые и аналоговые микросхемы, которые практически не требуют наладки.

Автоматизация работы и защита от перегрузок электродвигателей насосов мощностью 180...250 Вт
(нажмите для увеличения)

Предохранитель FU1 применен в схеме для подстраховки. Кому не известно, что пока перегорает предохранитель, выгорает полтелевизора? Электроника действует гораздо быстрее и надежнее при защите любого аппарата, механизма. Кроме того, в схеме отсутствуют релейные элементы. В наше время только в крайних случаях, безвыходных ситуациях необходимо применять реле, контакторы, магнитные пускатели, ведь существуют оптроны, тиристоры, симисторы... Вместо дорогих и не очень надежных механических контактов необходимо применять вышеуказанные электронные приборы.

Регулятор напряжения сети построен на автотрансформаторе Т1 и переключателе SA1. Даже если в вашем доме стабильное напряжение 200...230 В, не спешите игнорировать его применение. Соберите эту схему и опробуйте, в каком диапазоне питающих напряжений электродвигатель насоса обеспечивает необходимую мощность на валу. Если, например, этот диапазон будет составлять 170...230 В, установите переключателем SA1 выходное напряжение регулятора сети около 190 В. В дальнейшем мы установим нижний допустимый предел напряжения 170 В, подаваемого на обмотку статора двигателя, а верхний - 210 В. В этом случае надежность и долговечность обмотки статора электродвигателя возрастет, да и потребляемая мощность снизится.

Регулятор напряжения сети рассчитан на минимальное напряжение в вашем доме 140 В и максимальное 260 В (чтобы получить Uвх=220 В). Следует отметить, что в автотрансформаторах по сравнению с силовыми трансформаторами первичная обмотка может быть намотана проводом в 2-3 раза тоньше. Если переделать сетевой трансформатор мощностью 200 Вт в автотрансформатор, то можно будет подключать нагрузку до 400...600 Вт. Можно использовать переделанный силовой трансформатор телевизора УЛПЦТИ-61 (ТС-270-1), у которого первичная обмотка I (1-2-3) содержит 318 витков провода ПЭВ-1 D0,91 мм (выводы I-I). Для этого необходимо разобрать трансформатор, удалить все вторичные обмотки и экранирующую фольгу. Сверху оставшейся первичной обмотки необходимо намотать обмотки II-X проводом D0,8...1 мм. Обмотки II-IV содержат по 19 витков; обмотки V-X - по 35 витков каждая. Контакты переключателя SA1 должны быть рассчитаны на ток не менее 10 А (можно применить обычный 3-4-секционный галетный переключатель, включив соответствующие контакты секций параллельно). Вольтметр переменного тока должен иметь предел измерения 250...300 В. Амперметр должен иметь предел измерения 10 А.

На контурах L1C10, L2C11 выполнен источник реактивной мощности с подавлением гармонических искажений на 5-й и 7й гармониках. Этот источник применен для повышения КПД устройства. Номиналы конденсаторов С10, С11 и дросселей L1, L2 выбраны ориентировочно, хотя если применить даже эти номиналы, вы все равно окажетесь в выигрыше. Для более точного расчета этих номиналов необходимо измерить индуктивность обмотки статора электродвигателя насоса и произвести расчет, пользуясь рекомендациями [1].

Работой электронасоса управляет симистор VS1 (ТС122-25). Выходной формирователь построен на элементе "ИЛИ" DD3.2, транзисторах VT3, VT4 и тиристорной оптопаре U1. Если хотя бы на одном из входов DD3.2 присутствует лог."1", то на базе транзистора VT4 - лог."0" и он закрыт.

Светодиод оптопары не светится, отсутствует положительный потенциал на базе VT4, и он закрыт. На управляющем электроде симистора VS1 нет положительного потенциала, он закрыт, на обмотку статора электродвигателя насоса не подается питающее напряжение, насос выключен.

Если на всех входах DD3.2 присутствует лог."0", на базе транзистора VT4 - положительный потенциал, он открыт, светится светодиод оптопары, через открытый тиристор оптопары положительный потенциал подается на базу транзистора VT3, он открывается, положительный потенциал появляется на управляющем электроде симистора VS1, он открывается, электронасос включается в работу.

Трансформатор Т1 мощностью 10...20 Вт любого типа. Напряжения на его обмотках: U(wII) 12 В; U(wIII) 20 В; U(wIV) 12 В при выходном напряжении регулятора, выбранном переключателем SA1.

Стабилизированный источник питания 9 В выполнен на диодах VD1-VD4, стабилитроне VD5 и транзисторах VT1, VT2. Источник питания 27 В выполнен на диодном мосте VD6-VD9.

Чтобы электронасос был включен в работу, необходимо, чтобы на всех входах DD3.2 был лог."0". Включают насос переводом переключателя SA3 в нижнее по схеме положение.

Автоматическое включение или выключение электронасоса в зависимости от количества воды в водоеме или колодце и наполняемом резервуаре производится при помощи схемы на цифровых микросхемах DD9-DD11. Светодиоды HL1-HL4 указывают, находятся ли в воде соответствующие датчики уровня воды. Работа данной схемы описана в [2]. Если нет необходимости в применении какого-либо датчика уровня воды, его просто не подключают к схеме. Если нет необходимости в автоматизации, данную схему просто не собирают, а вывод 11 элемента DD3.2 подключают к общему проводу.

Схема защиты электродвигателя насоса от перегрева собрана на операционном усилителе (ОУ) К140УД12, используемом как компаратор, и триггере DD4.1. Естественно, можно применить и другие операционные усилители с соответствующими цепями коррекции. Терморезистор R17 приклеивают к обмотке статора эпоксидной смолой. Заодно центруют ротор электродвигателя, смазывают подшипники и т.д. Подстроечным резистором R19 выставляют необходимый порог срабатывания компаратора, например, при температуре +80°С. Если температура обмотки статора не превышает данного уровня, то напряжение на инверсном входе ОУ DA4 будет более положительно, чем на прямом, и на его выходе 6 будет низкий потенциал. Триггер DD4.1 будет находиться в состоянии "0", и на входе 9 элемента "ИЛИ" DD3.2 будет уровень лог."0", разрешающий работу электронасоса. При повышении температуры обмотки статора до +80°С сопротивление терморезистора R17 возрастает до такой величины, что на прямом входе ОУ DA4 положительный потенциал становится больше, чем на инверсном, и компаратор скачком принимает положение положительного насыщения. На его выходе 6 появляется лог."1", триггер DD4 устанавливается в состояние "1".

На входе 9 элемента "ИЛИ" DD3.2 появляется лог."1", что приводит к выключению насоса. Свечение светодиода HL3 указывает на превышение температуры обмотки статора электродвигателя насоса выше допустимой. Триггер DD4.1 останется в единичном состоянии и, соответственно, электронасос будет выключенным до тех пор, пока не будет нажата кнопка SB1 "Уст.0".

Схема защиты электродвигателя насоса от превышения тока обмотки статора выполнена на ОУ DA3, используемом как компаратор. Количество витков трансформатора тока ТА1 подбирают экспериментально таким образом, чтобы при нормальной работе электродвигателя насоса напряжение на его обмотке составляло 2,5...3 В. На инверсный вход DA3 подается опорное напряжение 1,7 В. Амплитуда напряжения на прямом входе 3 должна быть около 1,5 В (выставляют подстроечным резистором R14). В этом случае при нормальном режиме работы электронасоса на выходе 6 DA3 будет уровень лог."0", триггер DD2.2 будет находиться в нулевом состоянии.

Если ток через обмотку статора будет выше допустимого, то амплитуда положительных импульсов на прямом входе 3 ОУ DA3 превысит величину опорного напряжения на инверсном входе и компаратор будет опрокидываться в состояние положительного насыщения (см. временные диаграммы рис.2).

Автоматизация работы и защита от перегрузок электродвигателей насосов мощностью 180...250 Вт

На выходе компаратора появляются импульсы положительной полярности, которые устанавливают триггер DD2.2 в единичное состояние. Светодиод HL2 будет светиться, что указывает на превышение током обмотки статора допустимой нормы. Одновременно импульсы с выхода 6 DA3 через элемент "ИЛИ" DD3.1 и инвертор DD1.2 поступают на вход одновибратора, выполненного на элементах DD5.1, DD6, DD7.1, DD7.2, DD7.3, и на счетчик импульсов DD8.1, DD8.2 (одновибратор описан в [3]). Первым же импульсом (см. рис.2) одновибратор опрокидывается в единичное состояние. Подстроечным резистором R34 длительность импульса одновибратора выставляют в пределах 7...9 с.

Счетчик импульсов выполнен на микросхеме DD8. Уровень лог."1" на выходе 14 счетчика DD8.2 при наличии импульсов на входе 2 DD8.1 появляется через 5,12 с. Если это произошло, на входах 12, 13 элемента "И" DD3 появляется лог."1", которая через инвертор DD1.4 устанавливает триггер DD4.2 в состояние лог."1" (выход 13), эта "1" подается на вход 12 элемента "ИЛИ" DD3.2 и включает электронасос. Если за эти 5,12 с нет перегрузки по току, например, при запуске насоса, одновибратор все равно вырабатывает одиночный импульс длительностью 7...9 с, но на входе 13 элемента "И" DD1.3 лог."1" не появляется и электронасос не выключится. После запуска насоса (если светится светодиод HL2) необходимо установить в "0" триггер DD2.2 нажатием кнопки SB1.

Схема защиты электронасоса от несоответствия необходимым нормам напряжения, подаваемого на обмотку статора, выполнена на двухпороговом компараторе DA1, DA2, работа которого описана в [4]. Подстроечным резистором R4 на катоде диода VD10 выставляют амплитуду положительных импульсов около 9 В. Настраивают двухпороговый компаратор согласно указаниям [4].

Если ваш электронасос, к примеру, нормально работает в диапазоне питающих напряжений от 170 до 210 В, то нижний и верхний пороги срабатывания компаратора необходимо выставить именно приэтих напряжениях. Когда напряжение на электродвигателе насоса будет ниже 170 В или выше 210 В, на выходе двухпорогового компаратора (аноды диодов VD11, VD13) появятся положительные импульсы, которые установят триггер DD2.1 в состояние лог."1". Свечение светодиода HL1 укажет на несоответствие нормам напряжения. Одновременно вышеуказанные импульсы через элемент "ИЛИ" DD3.1 и инвертор DD1.2 поступают на вход одновибратора и счетчика импульсов. Аналогично, как и в случае превышения предельно допустимого тока, через 5,12 с электронасос выключится. Если время несоответствия величины напряжения необходимым параметрам не будет превышать 5,12 с, электродвигатель останется в работе. Свечение светодиода HL1 необходимо погасить нажатием кнопки SB1 "Уст.0".

В обоих рассматриваемых случаях (время несоответствия не превышает 5,12 с) счетчики DD8.1, DD8.2 обнуляются лог."1" на входах 7 и 15 с инверсного выхода 2 триггера DD5.1 одновибратора через 7...9 с.

Наладка. В первую очередь необходимо узнать при каком диапазоне напряжений ваш электронасос обеспечивает необходимую мощность на валу с помощью регулятора напряжения сети. Затем при отключенной нагрузке необходимо наладить блок питания. Подбором резистора R1 выставить ток через стабилитрон VD5 в пределах 5...10 мА. Подстроечным резистором R2 установить напряжение на выходе стабилизатора (конденсатор С3) 9 В. Проверить напряжение на конденсаторе С5 (24...30 В).

Установить вместо электронасоса лампу накаливания мощностью 200 Вт. Переключатель SA1 установить в выбранное вами положение в зависимости от параметров вашей сети и электронасоса. Переключатель SA3 установить в верхнее по схеме положение ("Выкл"). Установить переключатель SA2 ("Сеть") в нижнее по схеме положение. Нажать кнопку SB1 ("Уст."0").

Подать напряжение +9 В на вывод 13 элемента "ИЛИ" DD3.2. Лампа должна засветиться (свидетельство того, что выходной формирователь и симистор исправны). Если будет светиться любой из светодиодов HL1-HL3, то будет светиться и электролампа. В этом случае необходимо отпаять резистор R31. Если электролампа погаснет, то это тоже свидетельствует о работоспособности выходного формирователя и симистора.

Далее по вышеизложенной методике настраивают схему, что не составляет большого труда, так как все выполнено по принципам вычислительной техники ("0" или "1").

Литература:

  1. Маньковский А.Н. Регулятор мощности для активно-индуктивной нагрузки до 15 кВт//Электрик. - 2001. - №6. - С.21.
  2. Маньковский А.Н. Полная автоматизация устройства управления электронасосом//Электрик. - 2001. - №1. - С.22-23.
  3. Маньковский А.Н. Генератор одиночных импульсов и измеритель длительности одиночных импульсов//Радіоаматор. - 2001. - №2. - С.20-22.
  4. Маньковский А.Н. Устройство переключения с автоматическим зарядным устройством//Электрик. - 2001. - №3. С.21.

Автор: А.Н. Маньковский

Смотрите другие статьи раздела Электродвигатели.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Стерильного нейтрино не существует 15.01.2026

В физике элементарных частиц поиск новых, пока не обнаруженных объектов играет ключевую роль в понимании устройства Вселенной. Иногда такие поиски приводят к громким открытиям, а иногда - к не менее важным отрицательным результатам, которые позволяют отбросить неверные направления. Именно к таким случаям относится недавний вывод ученых о судьбе стерильного нейтрино - одной из самых интригующих гипотетических частиц последних десятилетий. Исследователи из американской лаборатории Fermilab официально сообщили, что им не удалось найти доказательства существования стерильного нейтрино. К такому выводу пришла команда эксперимента MicroBooNE после многолетнего анализа столкновений нейтрино, которые ранее рассматривались как возможный намек на существование четвертого типа этих частиц. Предполагалось, что стерильное нейтрино взаимодействует с материей исключительно через гравитацию, что делало его крайне трудным объектом для обнаружения. В рамках современной физики нейтрино известны в т ...>>

Беспроводные наушники и колонки Fender 15.01.2026

Музыкальная индустрия постепенно адаптируется к цифровым технологиям, и известный производитель музыкальных инструментов Fender расширяет свое присутствие за пределы гитар и усилителей, представляя современные решения для прослушивания музыки. Новые беспроводные наушники и Bluetooth-колонки Fender объединяют богатый звук, модульность и удобство использования как для дома, так и для профессиональной работы. Флагманской новинкой стали наушники Fender Mix, отличающиеся модульной конструкцией. Динамики подключаются к оголовью через порт USB Type-C и могут быть сняты вместе с амбушюрами, что облегчает уход и транспортировку. Один из динамиков оснащен встроенным адаптером USB Type-C для подключения к источнику звука без потерь, поддерживая кодеки LDHC и Fire, а также функцию Auracast. На другом динамике размещен съемный аккумулятор, который обеспечивает до 100 часов работы без активного шумоподавления; при включении ANC время работы сокращается до 52 часов. Наушники доступны по цене $299 ...>>

Польза белкового завтрака 14.01.2026

Правильное питание по утрам играет ключевую роль в поддержании здоровья и контроле веса. Многочисленные исследования подтверждают, что состав завтрака может влиять на аппетит в течение всего дня и качество употребляемой пищи. Австралийские ученые провели масштабный эксперимент, который показал, что употребление белковой пищи с утра помогает дольше чувствовать сытость и предотвращает переедание. В исследовании участвовали более 9 тысяч человек среднего возраста 46 лет. В период с 2011 по 2012 год специалисты анализировали рационы респондентов, оценивая долю основных макронутриентов. В среднем участники потребляли 43% углеводов, 31% жиров, 18% белков, 2% клетчатки и 4% алкоголя. Такой рацион позволил ученым проследить взаимосвязь между утренним приемом пищи и пищевым поведением в течение дня. Выяснилось, что участники, чей завтрак содержал недостаточное количество белка, ощущали повышенный аппетит в течение дня. Они ели больше, чем необходимо, и часто выбирали продукты с высоким со ...>>

Случайная новость из Архива

От дрожи в руках 16.09.2000

Тремор (дрожь в руках) может сильно мешать хирургу, особенно при микрохирургических операциях. Некоторые из хирургов даже принимают перед операцией специальные медикаменты, так называемые бетаблокаторы (кстати, считающиеся допингом у спортивных стрелков).

Камерон Ривьер из университета Карнеги Меллона в Питсбурге (США) измерил и зарегистрировал дрожание кончика скальпеля в руках хирурга. Траектория движения скальпеля раскладывается на три синусоиды амплитудой до полумиллиметра.

Ривьер встроил в лезвие инструмента пьезокристаллы, которые подключены к генератору, выдающему такие же колебания, но в противоположной фазе. В результате скальпель не дрожит.

Другие интересные новости:

▪ Лазерный глюкометр

▪ Цветной монитор с электронными чернилами

▪ Северное полушарие ждет самое жаркое лето за 600 лет

▪ Съедобные покрытие для продления сроков годности продуктов

▪ Найдена причина образования новых нервных клеток

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Шпионские штучки. Подборка статей

▪ статья В холодильнике - 0°С. Советы домашнему мастеру

▪ статья Какая находка помогла распознать смысл египетских иероглифов? Подробный ответ

▪ статья Врач по гигиене детей и подростков. Должностная инструкция

▪ статья Охрана квартиры с оповещением по телефонной линии. Энциклопедия радиоэлектроники и электротехники

▪ статья Страшилка. Секрет фокуса

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:





Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2026