Menu English Ukrainian Russian Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Регулятор частоты вращения трехфазных асинхронных двигателей. Энциклопедия радиоэлектроники и электротехники

Бесплатная техническая библиотека

Энциклопедия радиоэлектроники и электротехники / Электродвигатели

Комментарии к статье Комментарии к статье

Предлагаю вниманию читателей схему (рис.1) и конструкцию устройства, позволяющего регулировать частоту вращения трехфазного асинхронного двигателя (АД) в диапазоне 300...8000 об/мин (в дальнейшем - РЧВ). Уверен, что оно будет полезно многим радиолюбителям, так как придает трехфазным асинхронным двигателям новые качественные показатели: питание от однофазной сети практически без потери мощности, возможность регулирования пускового момента, повышение КПД, независимость направления вращения от фазы поданного напряжения, регулирование в широких диапазонах частоты вращения как на холостом ходу, так и при нагрузке, а главное, возможность повышать максимальную частоту вращения с 3000 до 6000...10000 об/мин.

Регулятор частоты вращения трехфазных асинхронных двигателей
(нажмите для увеличения)

Основные характеристики РЧВ:

  • Напряжение питания ~220 В
  • Потребляемая мощность, не более 15 Вт (без учета мощности двигателя)
  • Тип двигателя трехфазный асинхронный Fн=3000 об/мин, Рн=120 Вт.

Как известно, существует несколько способов регулирования частоты вращения АД - изменением питающего напряжения, нагрузки на валу, применением специальной обмотки ротора с регулируемым сопротивлением, а также частотное регулирование, являющееся наиболее эффективным методом, так как позволяет сохранить энергетические характеристики АД и применить наиболее дешевые и надежные АД с короткозамкнутым ротором. Прежде чем рассмотреть работу РЧВ, необходимо напомнить читателю основные характеристики АД.

1. Коэффициент полезного действия КПД=(Рв/Рп), где Рв - механическая мощность на валу двигателя, Рп - электрическая мощность, потребляемая из сети. На холостом ходу КПД=0, так как Рв=0. При номинальной мощности на валу Рн КПД имеет максимальное значение (0,75 ... 0,95) для разных двигателей.

2. Токи фаз АД показаны на рис.2.

Регулятор частоты вращения трехфазных асинхронных двигателей

3. Частота вращения магнитного поля статора n1=(60Fп)/р (об/мин), где Fп - частота питающего тока, Гц; р - число пар полюсов статора. Таким образом, при стандартной частоте Fп=50 Гц магнитное поле в зависимости от числа пар полюсов вращается с частотой (см. таблицу).

Регулятор частоты вращения трехфазных асинхронных двигателей

4. Скольжение S=(Fп-Fр)/Fп (%). Частота вращения ротора .р всегда меньше частоты Fп на величину скольжения S (2...6%), например Fр=960; 1420; 2840 об/мин. Принцип действия АД основан на взаимодействии вращающегося магнитного поля статора с токами, которые наводятся этим полем в проводниках обмотки ротора.

5. Вращающий момент М=Рв/О, где О - угловая скорость вращения ротора О=2πFв/60.

6. Перегрузочная способность Кп=Мкр/Мн=1,5...2,5, где Мкркритический момент; Мн - номинальный момент.

7. Cosϕ=Iса/Iср=0,1...0,2 при номинальной частоте вращения, где Iса - ток статора активный, Iср - ток статора реактивный. Увеличение нагрузки двигателя сопровождается увеличением только активной составляющей статора и, следовательно, увеличением cosϕ до 0,8...0,9. Отсюда ясна роль загрузки двигателя с целью улучшения cosϕ питающей сети.

8. Пусковой ток Iп - ток статора при пуске АД, Iп/Iн=5 ... 7. Пусковой момент АД не велик. При запуске АД должен развивать момент, превышающий тормозной момент механизма, иначе он не развернется. Мп/Мн=0,8...1,5.

Функциональная схема РЧВ представлена на рис.3.

Регулятор частоты вращения трехфазных асинхронных двигателей

Задающий генератор предназначен для изменения частоты питающего АД тока. Он осуществляет изменение частоты вращения ротора. Формирователь импульсов трехфазной последовательности (ФИТ) преобразует постоянное напряжение в три напряжения прямоугольной формы, сдвинутые по фазе на 120°. Предварительный усилитель согласует маломощные выходы ФИТ с мощным оконечным каскадом, задачей которого служит питание фаз АД необходимым по форме и частоте током. Блок питания вырабатывает напряжения +5,+9 и +300 В для питания РЧВ.

На рис.4 представлены все необходимые осциллограммы.

Регулятор частоты вращения трехфазных асинхронных двигателей

На элементах DD1.1...DD1.3 собран задающий генератор - мультивибратор с изменяемой частотой генерации в пределах 30...800 Гц. Изменяют частоту переменным резистором R2. ФИТ состоит из счетчика DD2, элемента "И-НЕ" DD1.4 и четырех элементов "исключающее ИЛИ" DD3.1...DD3.4. На транзисторах VT2...VT13 собраны три идентичных предварительных усилителя (по одному на каждую фазу АД).

Рассмотрим принцип действия одного из них (верхнего по схеме). Когда на выходе элемента DD3.2 появляется высокий уровень, открывается составной транзистор VT2,VT5. С выхода элемента DD3.2 высокий уровень поступает на вход оптопары DD4, в результате чего на ее выходе устанавливается низкий уровень, который закрывает составной транзистор VT8,VT11. Аналогично работают и остальные два усилителя, только лишь с разностью по фазе 120 °. Для развязки по напряжению транзисторы VT2, VT5 и VT8, VT11 питаются от отдельных источников +9 В, а транзисторы VT14...VT19 - от источника +300 В. Диоды VD10, VD13, VD16, VD17

 служат для развязки по напряжению и для более надежного запирания транзисторов VT14 и VT15.

Одно из главных условий нормальной работы транзисторов VT14 и VT15 - они не должны быть одновременно открыты. Для этого на вход составного транзистора VT8, VT11 управляющее напряжение поступает с выхода оптопары DD4, что обеспечивает некоторую задержку его переключения. При появлении на входе оптопары DD4 высокого уровня через элементы R8, VD7 открывается составной транзистор VT2,VT5, а транзистор VT15 закрывается. Одновременно начинается зарядка конденсатора С9. Через 40 мкс после появления высокого уровня на входе оптопары DD4 на ее выходе появляется низкий уровень, составной транзистор VT8,VT11 закрывается, транзистор VT14 открывается. Появление на входе оптопары DD4 низкого уровня не может мгновенно закрыть составной транзистор VT2,VT5, так как разряд конденсатора С9 по цепи R9, база, эмиттер поддерживает этот транзистор в течение 140 мкс в открытом состоянии, а транзистор VT15 - в закрытом. Время задержки выключения оптопары DD4 составляет 100 мкс, поэтому транзистор VT14 закрывается раньше, чем открывается транзистор VT15.

Диоды VD22...VD23 защищают транзисторы VT14,VT15 от повышения напряжения при коммутации индуктивной нагрузки - обмоток АД, а также для замыкания токов обмоток в отрезки времени, когда напряжение изменяет полярность (при переключении транзисторов VT14,VT15). Например, после закрытия транзисторов VT14 и VT17 ток некоторое время проходит в прежнем направлении - от фазы А к фазе В, замыкаясь через диод VD24, источник питания, VD23, пока не уменьшится до нуля.

Рассмотрим принцип действия оконечного каскада на примере фаз А и В. При открытии транзисторов VT14 и VT17 к началу фазы А подается положительный потенциал, а к ее концу - отрицательный. После их закрытия открываются транзисторы VT15 и VT16, и теперь, наоборот, к концу фазы А подается положительный потенциал, а к началу - отрицательный. Таким образом, на фазы А, В и С подаются переменные напряжения прямоугольной формы со сдвигом по фазе 120° (см.рис.4). Частота питающего АД напряжения определяется частотой переключения этих транзисторов. Благодаря поочередному открытию транзисторов, ток последовательно проходит по контурам обмоток статора АВ-АС-ВСВА-СА-СВ-АВ, что создает вращающееся магнитное поле.

Формы фазных токов представлены на рис. 5.

Регулятор частоты вращения трехфазных асинхронных двигателей

Описанная выше схема построения оконечного каскада - трехфазная мостовая [1]. Ее достоинством является то, что в кривых фазных токов отсутствуют третьи гармонические составляющие.

Для питания низковольтных каскадов используется стабилизатор VD1,VT1,VD6, позволяющий получить +5 В для питания микросхем DD1...DD3, а также +9 В для питания предварительных усилителей (VT2...VT7). Каждая верхняя пара предварительных усилителей питается от своего выпрямителя: VT8,VT11 - от VD3, VT9,VT12 - от VD4, VT10,VT13 - от VD5.

Оконечные каскады питаются от двухполупериодного выпрямителя и LC-фильтра (VD2,L1,C3,C7) +300 В. Емкости конденсаторов С3 и С7 выбирают исходя из мощности АД, чем больше емкость, тем лучше, но не менее 20 мкФ при индуктивности дросселя L1 0,1 Гн.

В РЧВ можно применять постоянные резисторы типа МЛТ, ОМЛТ, ВС. Конденсатор С1 - любой керамический или металлобумажный; С2...С8 - любые оксидные. Дроссель L1 можно исключить, но при этом придется увеличить емкости каждого из конденсаторов C3 и С7 до 50 мкФ. Микросхема DD1 типа К155ЛА3, DD2 - К155ИЕ4, DD3 К155ЛП5. Оптопары DD4...DD6 - AOT165A1. Можно использовать и другие, у которых время задержки включения не более 100 мкс, а напряжение изоляции не менее 400 В.

Основное требование к транзисторам - высокий и примерно одинаковый у всех коэффициент усиления (не менее 50). Транзисторы VT2...VT4, VT8...VT10 типа КТ315А, их можно заменить на КТ315, КТ312, КТ3102 с любыми буквенными индексами. Транзисторы VT1, VT5...VT7, VT11...VT13 типа КТ817 или КТ815 с любым буквенным индексом. Транзисторы VT14...VT19 - КТ834А или КТ834Б. Для их замены можно использовать мощные высоковольтные транзисторы с коэффициентом усиления не менее 50. Так как выходные транзисторы работают в переключательном режиме, то необходимо установить их на радиаторы площадью 10 см2 каждый. Однако при использовании двигателей мощностью более 200 Вт потребуются радиаторы с большей площадью.

Мостовые выпрямители VD1,VD3...VD5 - КЦ405А. Выпрямитель VD2 - КЦ409А. При мощности АД более 300 Вт вместо мостового выпрямителя КЦ409А необходимо использовать мост из одиночных диодов, рассчитанных на обратное напряжение более 400 В и соответствующий ток. Стабилитрон VD6 - КС156А. Диоды VD7...VD21 - КД209А.

Диоды VD22...VD27 любые, рассчитанные на ток не менее 5 А и обратное напряжение не менее 400 В, например КД226В или КД226Г.

Трансформатор - любой мощностью не менее 15 Вт, имеющий четыре раздельные вторичные обмотки по 8 В каждая.

При налаживании устройства сначала отключают +300 В и проверяют наличие всех осциллограмм в указанных точках (см.рис.4). При необходимости подборкой конденсатора С1 или резистора R2 добиваются изменения частоты на коллекторе транзистора VT5 в пределах 5...130 Гц. Затем при отключенном АД вместо +300 В подают от внешнего источника напряжение +100...150 В, замыкают коллектор и эмиттер транзистора VT11, коллектор и эмиттер транзистора VT5 (чтобы закрыть на длительное время транзисторы VT14 и VT15) и измеряют ток в цепи коллектора транзистора VT14, который должен быть не более нескольких мкА - ток утечки транзисторов VT14 и VT15. Далее размыкают коллекторы и эмиттеры вышеуказанных транзисторов и устанавливают резистором R2 максимальную частоту генерации.

Подборкой емкости конденсатора С9 в сторону увеличения добиваются минимального тока в цепи коллектора транзистора VT14, который в идеальном случае равен току утечки транзисторов VT14 и VT15. Таким способом налаживают и остальные два оконечных усилителя. Далее подключают к выходу РЧВ (к гнезду Х7) АД, обмотки которого соединены звездой. Вместо +300 В подают от внешнего источника напряжение в пределах +100...150 В. АД должен начать вращаться. При необходимости изменить направление вращения меняют местами любые фазы АД.

Если оконечные транзисторы работают в правильном режиме, то они остаются длительное время чуть теплыми, в противном случае подбирают сопротивления резисторов R18, R20, R22, R23...R25.

Литература:

  1. Радин В.И. Электронные машины: Асинхронные машины. -М.: Высш. шк., 1988.
  2. Кравчик А.Э. Выбор и применение асинхронных двигателей. М.: Энергоатомиздат, 1987.
  3. Лопухина Е.М. Асинхронные исполнительные микродвигатели для систем автоматики. -М.: Высш. шк., 1988.

Автор: А. Дубровский

Смотрите другие статьи раздела Электродвигатели.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Искусственная кожа для эмуляции прикосновений 15.04.2024

В мире современных технологий, где удаленность становится все более обыденной, сохранение связи и чувства близости играют важную роль. Недавние разработки немецких ученых из Саарского университета в области искусственной кожи представляют новую эру в виртуальных взаимодействиях. Немецкие исследователи из Саарского университета разработали ультратонкие пленки, которые могут передавать ощущение прикосновения на расстоянии. Эта передовая технология предоставляет новые возможности для виртуального общения, особенно для тех, кто оказался вдали от своих близких. Ультратонкие пленки, разработанные исследователями, толщиной всего 50 микрометров, могут быть интегрированы в текстильные изделия и носиться как вторая кожа. Эти пленки действуют как датчики, распознающие тактильные сигналы от мамы или папы, и как исполнительные механизмы, передающие эти движения ребенку. Прикосновения родителей к ткани активируют датчики, которые реагируют на давление и деформируют ультратонкую пленку. Эта ...>>

Кошачий унитаз Petgugu Global 15.04.2024

Забота о домашних животных часто может быть вызовом, особенно когда речь заходит о поддержании чистоты в доме. Представлено новое интересное решение стартапа Petgugu Global, которое облегчит жизнь владельцам кошек и поможет им держать свой дом в идеальной чистоте и порядке. Стартап Petgugu Global представил уникальный кошачий унитаз, способный автоматически смывать фекалии, обеспечивая чистоту и свежесть в вашем доме. Это инновационное устройство оснащено различными умными датчиками, которые следят за активностью вашего питомца в туалете и активируются для автоматической очистки после его использования. Устройство подключается к канализационной системе и обеспечивает эффективное удаление отходов без необходимости вмешательства со стороны владельца. Кроме того, унитаз имеет большой объем смываемого хранилища, что делает его идеальным для домашних, где живут несколько кошек. Кошачий унитаз Petgugu разработан для использования с водорастворимыми наполнителями и предлагает ряд доп ...>>

Привлекательность заботливых мужчин 14.04.2024

Стереотип о том, что женщины предпочитают "плохих парней", долгое время был широко распространен. Однако, недавние исследования, проведенные британскими учеными из Университета Монаша, предлагают новый взгляд на этот вопрос. Они рассмотрели, как женщины реагируют на эмоциональную ответственность и готовность помогать другим у мужчин. Результаты исследования могут изменить наше представление о том, что делает мужчин привлекательными в глазах женщин. Исследование, проведенное учеными из Университета Монаша, приводит к новым выводам о привлекательности мужчин для женщин. В рамках эксперимента женщинам показывали фотографии мужчин с краткими историями о их поведении в различных ситуациях, включая их реакцию на столкновение с бездомным человеком. Некоторые из мужчин игнорировали бездомного, в то время как другие оказывали ему помощь, например, покупая еду. Исследование показало, что мужчины, проявляющие сочувствие и доброту, оказались более привлекательными для женщин по сравнению с т ...>>

Случайная новость из Архива

Обнаружена гигантская звезда с магнитными облаками 19.11.2022

Ученые Синьцзянской астрономической обсерватории (Китай) изучили свет от экстремальной магнитной звезды HD 345439, определив ее свойства. Одной из ее особенностей являются намагниченные облака плазмы, периодически омрачающие свет от звезды, снижая ее блеск.

HD 345439 является богатым гелием массивной магнитной звездой с очень сильными магнитными полями. Она примерно в семь раз больше и почти в девять раз массивнее Солнца. HD 345439 имеет продольные магнитные поля, демонстрирующие периодическую изменчивость амплитудой около 2-3 килогаусов (кГс), а полярная магнитная сила этой звезды достигает 10 кГс. Такие мощные магнитные поля могут способствовать накоплению околозвездного материала и сформировать плотный диск.

Для объяснения изменчивости магнитных звезд ученые разработали модель жестко вращающейся магнитосферы (англ. Rigidly Rotating Magnetosphere, RRM). Она предполагает, что движущаяся вдоль силовых линий плазма подвержена гравитационному воздействию, что заставляет ее падать на поверхность звезды, и центробежной силе, направленной в противоположную сторону. Для каждой линии магнитного поля существует точка, где сумма обоих потенциалов достигает минимального значения, необходимого для накопления околозвездного материала.

Наблюдения проводились с помощью Наньшанского телескопа Синьцзянской астрономической обсерватории в течение 12 ночей с 12 октября по 12 ноября 2020 года. На основе фотометрических данных был рассчитан период обращения звезды, равный около 0,76 суток. Кривая блеска демонстрирует S-образную асимметричную форму, что, согласно RRM, вызвано магнитными облаками - скоплениями плазмы, омрачающими свет от звезды. Асимметричность может объясняться устранением между центром дипольного магнитного поля HD 345439 и его осью вращения.

Согласно RRM, сильная центробежная сила, возникающая при быстром вращении, должна приводить к центробежным прорывам массы, однако признаков этого явления в кривых блеска не наблюдалось. Ученые объясняют это расхождение тем, что магнитным облакам было невозможно набрать достаточную массу, необходимую для прорыва. Критическая масса сильно зависит от силы магнитного поля, звездного радиуса, скорости потери массы и скорости побега плазмы. Предполагается, что у HD 345439 характерна более низкая частота прорывов, чем у других подобных звезд. Таким образом, временная шкала прорывов больше, чем у последнего, с низкой частотой эпизодов прорывов.

Возраст звезды составляет примерно 26,8 миллиона лет, эффективная температура - 22 000 кельвинов, а содержание элементов тяжелее гелия меньше солнечного примерно втрое. Расстояние до HD 345 439 оценивается в 6982 световых лет.

Другие интересные новости:

▪ Воду нагрели до рекордной температуры

▪ Материнская плата ASUS X99-WS/IPMI с системой дистанционного управления

▪ Броня морского конька

▪ Суперкомпьютер Aurora

▪ Отработанные ступени космических кораблей возвращаются

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Узлы радиолюбительской техники. Подборка статей

▪ статья Несвоевременные мысли. Крылатое выражение

▪ статья Почему кошки и другие животные переносят детей зубами за холку? Подробный ответ

▪ статья Стальник колючий. Легенды, выращивание, способы применения

▪ статья Степень пылевлагозащищенности. Энциклопедия радиоэлектроники и электротехники

▪ статья Одним движением руки. Секрет фокуса

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:





All languages of this page

Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2024