Бесплатная техническая библиотека
Дробный квантовый эффект Холла. Энциклопедия радиоэлектроники и электротехники

Энциклопедия радиоэлектроники и электротехники / Электричество для начинающих
Комментарии к статье
Об эффекте Холла написано много, этот эффект интенсивно используется в технике, но ученые продолжают его исследовать. В 1980 г. немецкий физик
Клаус фон Клитцунг изучал работу эффекта Холла при сверхнизких температурах. В тонкой пластинке полупроводника фон Клитцунг плавно изменял напряженность магнитного поля и обнаружил, что сопротивление Холла изменяется не плавно, а скачками. Величина скачка не зависила от свойств материала, а являлась комбинацией фундаментальных физических констант, деленной на постоянное число. Получалось, что законы квантовой механики каким-то образом изменяли природу эффекта Холла. Это явление было названо интегральным квантовым эффектом Холла. За это открытие фон Клитцунг получил Нобелевскую премию по физике в 1985 г.
Два года спустя после открытия фон Клитцунга в лаборатории компании Bell Telephone (той самой, в которой был открыт транзистор) сотрудники Стормер и Тсуи изучали квантовый эффект Холла, используя исключительно чистый образец арсенида галлия большого размера, изготовленный в этой же лаборатории. Образец имел настолько высокую степень чистоты, что электроны проходили его из конца в конец, не встречая препятствий. Эксперимент Стормера и Тсуи проходил при гораздо более низкой температуре (почти абсолютный нуль) и с более мощными магнитными полями, чем в эксперименте фон Клитцунга (в миллион раз больше, чем магнитное поле Земли).
К своему большому удивлению Стормер и Тсуи обнаружили скачок в сопротивлении Холла в три раза больший, чем у фон Клитцунга. Затем они обнаружили еще большие скачки. Получалась та же комбинация физических постоянных, но деленная не на целое, а на дробное число. Заряд электрона у физиков считается константой, не делимой на части. А в этом эксперименте как бы участвовали частицы с дробными зарядами. Эффект был назван дробным квантовым эффектом Холла.
Год спустя после этого открытия сотрудник лаборатории Лафлин дал теоретическое объяснение эффекта. Он заявил, что комбинация сверхнизкой температуры и мощного магнитного поля заставляет электроны образовывать несжимаемую квантовую жидкость.

На рисунке с помощью компьютерной графики показан поток электронов (шары), протыкающих плоскость. Неровности плоскости представляют распределение заряда одного из электронов в присутствии магнитного поля и заряда других электронов. Если электрон добавляется к квантовой жидкости, то образуется некоторое количество квазичастиц с дробным зарядом (на рисунке это показано как набор стрелок у каждого электрона).
В 1998 г. Хорст Стормер, Даниэль Тсуи и Роберт Лафлин были удостоены Нобелевской премии по физике. В настоящее время Х.Стормер - профессор физики Колумбийского университета, Д.Тсуи - профессор Принстонского университета, Р.Лафлин - профессор Стенфордского университета.
Смотрите другие статьи раздела Электричество для начинающих.
Читайте и пишите полезные комментарии к этой статье.
<< Назад
Последние новости науки и техники, новинки электроники:
Лабораторная модель прогнозирования землетрясений
30.11.2025
Предсказание землетрясений остается одной из самых сложных задач геофизики. Несмотря на развитие сейсмологии, ученые все еще не могут точно определить момент начала разрушительного движения разломов. Недавние эксперименты американских исследователей открывают новые горизонты: впервые удалось наблюдать микроскопические изменения в контактной зоне разломов, которые предшествуют землетрясению.
Группа под руководством Сильвена Барбота обнаружила, что "реальная площадь контакта" - участки, где поверхности разлома действительно соприкасаются - изменяется за миллисекунды до высвобождения накопленной энергии. "Мы открыли окно в сердце механики землетрясений", - отмечает Барбот. Эти изменения позволяют фиксировать этапы зарождения сейсмического события еще до появления традиционных сейсмических волн.
Для наблюдений ученые использовали прозрачные акриловые материалы, через которые можно было отслеживать световые изменения в зоне контакта. В ходе искусственного моделирования примерно 30% ко ...>>
Музыка как естественный анальгетик
30.11.2025
Ученые все активнее исследуют немедикаментозные способы облегчения боли. Одним из перспективных направлений становится использование музыки, которая способна воздействовать на эмоциональное состояние и когнитивное восприятие боли. Новое исследование международной группы специалистов демонстрирует, что даже кратковременное прослушивание любимых композиций может значительно снижать болевые ощущения у пациентов с острой болью в спине.
В эксперименте участвовали пациенты, обратившиеся за помощью в отделение неотложной помощи с выраженной болью в спине. Им предлагалось на протяжении десяти минут слушать свои любимые музыкальные треки. Уже после этой короткой сессии врачи фиксировали заметное уменьшение интенсивности боли как в состоянии покоя, так и при движениях.
Авторы исследования подчеркивают, что музыка не устраняет саму причину боли. Тем не менее, она воздействует на эмоциональный фон пациента, снижает уровень тревожности и отвлекает внимание, что в сумме приводит к субъективном ...>>
Алкоголь может привести к слобоумию
29.11.2025
Проблема влияния алкоголя на стареющий мозг давно вызывает интерес как у врачей, так и у исследователей когнитивного старения. В последние годы стало очевидно, что границы "безопасного" употребления спиртного размываются, и новое крупное исследование, проведенное международной группой ученых, вновь указывает на это. Работы Оксфордского университета, выполненные совместно с исследователями из Йельского и Кембриджского университетов, показывают: даже небольшие дозы алкоголя способны ускорять когнитивный спад.
Команда проанализировала данные более чем 500 тысяч участников из британского биобанка и американской Программы миллионов ветеранов. Дополнительно был выполнен метаанализ сорока пяти исследований, в общей сложности включавших сведения о 2,4 миллиона человек. Такой масштаб позволил оценить не только прямую связь между употреблением спиртного и развитием деменции, но и влияние генетической предрасположенности.
Один из наиболее тревожных результатов касается людей с повышенным ге ...>>
Случайная новость из Архива Новый магнитный материал для квантовых вычислений
30.09.2023
В настоящее время квантовые компьютеры требуют крайне низких температур, близких к абсолютному нулю (-273 градуса по Цельсию), чтобы поддерживать частицы в нужном квантовом состоянии. Преодоление этого температурного барьера и создание материалов, сохраняющих квантовые свойства при комнатной температуре, давно является одной из ключевых целей в области квантовых вычислений. Низкие температуры хоть и помогают сохранить квантовые свойства, но обустройство и охлаждение таких систем слишком дорого и неэффективно для широкого использования.
Исследователи из Техасского университета в Эль-Пасо разработали новый магнитный материал для квантовых вычислений, который остается магнитным при комнатной температуре и не требует использования дорогих редкоземельных минералов.
Этот материал обладает свойством суперпарамагнетизма, который позволяет контролировать его магнитизм с помощью внешнего магнитного поля. Исследователи используют молекулярные магниты, включая материал, который они синтезировали, чтобы создать кубиты - основные квантовые вычислительные блоки.
Магниты уже используются в современных компьютерах, и следующим шагом могут стать квантовые компьютеры, где магнитные материалы могут играть ключевую роль в создании спиновых кубитов - пар частиц, таких как электроны, которые могут быть взаимосвязаны на квантовом уровне.
Исследователи при создании этого материала учли важность избегания редкоземельных минералов, которые часто используются в технологии. Они экспериментировали с различными материалами, включая аминоферроцен и графен, и синтезировали материал путем последовательного сложения слоев, что позволило ему сохранить магнитные свойства при комнатной температуре. Этот материал оказался в 100 раз магнитнее, чем чистое железо.
|
Другие интересные новости:
▪ Обнаружена гигантская планета
▪ Биотопливо для ВМС США
▪ Спасение панд может вредить другим животным
▪ Новое поколение 14-нм процессоров Intel
▪ Получена новая форма аморфного льда
Лента новостей науки и техники, новинок электроники
Интересные материалы Бесплатной технической библиотеки:
▪ раздел сайта Блоки питания. Подборка статей
▪ статья Аристарх. Крылатое выражение
▪ статья Почему в Windows нельзя создать папку с именем con? Подробный ответ
▪ статья Уаутли. Легенды, выращивание, способы применения
▪ статья Применение компьютерных блоков питания. Энциклопедия радиоэлектроники и электротехники
▪ статья Кривая бутылка. Секрет фокуса
Оставьте свой комментарий к этой статье:
Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua
2000-2025