Menu Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Схема управления шаговым двигателем часов. Энциклопедия радиоэлектроники и электротехники

Бесплатная техническая библиотека

Энциклопедия радиоэлектроники и электротехники / Электродвигатели

Комментарии к статье Комментарии к статье

В связи с проводимыми в настоящее время евроремонтами и реорганизацией предприятий со стен многих учреждений снимают электромеханические часы с централизованным управлением, которые становятся бесполезными. Однако такие часы можно использовать, вмонтировав в них схему управления шаговым двигателем. Шаговый двигатель таких часов, например, типа "Стрела", запускается разнополярными импульсами амплитудой около 24 В, следующими с интервалом 1 мин. Модернизации настенных электромеханических часов посвящено несколько публикаций [1,2].

Предлагаемая схема управления состоит из кварцевого генератора, делителя частоты, формирователя минутных импульсов, предварительного усилителя-фазоинвертора, мостового ключевого усилителя, формирователя коротких импульсов и схемы питания. Устройство не содержит электромеханических реле и размещено на небольшой печатной плате, которая укреплена внутри корпуса часов.

Принципиальная схема устройства приведена на рис.1.

Схема управления шаговым двигателем часов
(нажмите для увеличения)

Кварцевый генератор и делители частоты выполнены на микросхеме DD1 типа К176ИЕ12. Кварцевый генератор работает на частоте 32768 Гц. Первая ступень деления частоты следования импульсов кварцевого генератора содержит 15-разрядный двоичный счетчик импульсов, с выхода которого (вывод 4) секундные импульсы поступают на вторую ступень деления с коэффициентом деления 60. Минутные импульсы с вывода 10 поступают на тактовый вход С счетного триггера микросхемы DD2 (вывод 3) и через резистор R4 на базу транзистора VT1. Состояние верхнего триггера изменяется по положительному перепаду минутного импульса.

На выходах триггера (выводы 1 и 2) получаем противофазные импульсы, которые поступают на предварительный усилитель на транзисторах VT2 и VT3. Усиленные импульсы управляют мостовым ключевым усилителем на транзисторах VT4, VT5, VT7 и VT8. В диагональ моста включена обмотка шагового двигателя часов. Если коллекторы транзисторов VT5 и VT8 соединить с общим проводом, то схема работает, так как при закрытом транзисторе VT2 и открытом VT3 открыты транзисторы VT4 и VT8, ток через обмотку протекает слева направо. При изменении состояния транзисторов VT2 и VT3 открываются транзисторы VT5 и VT7, ток через обмотку протекает в другую сторону. Но для срабатывания шагового двигателя достаточно коротких разнополярных импульсов длительностью 0,5 с.

Для уменьшения непроизводительной траты электроэнергии в промежутках времени между "шагами" (59,5 с), облегчения теплового режима, уменьшения габаритов устройства в схему введены формирователь коротких импульсов - одновибратор, собранный на нижнем триггере микросхемы DD2, и транзисторы VT1 и VT6. Одновибратор [З] запускается минутными импульсами с коллектора транзистора VT1. На выходе триггера (вывод 13) возникает положительный перепад напряжения, который через цепь обратной связи, воздействует на вход сброса R (вывод 10), возвращая одновибратор в исходное состояние. Постоянная времени цепи R6C5 выбрана таким образом, чтобы длительность генерируемого импульса составляла примерно 0,5 с. Этим импульсом открывается транзистор VT6, который разрешает протекание тока через мостовой усилитель.

На рис.2 приведены осциллограммы в характерных точках схемы.

Схема управления шаговым двигателем часов

Диоды VD3-VD6 защищают схему от всплесков, возникающих на обмотке шагового двигателя. Кнопка S1 служит для сброса делителей частоты в нулевое состояние и для задержки хода часов. Кнопка S2 предназначена для перевода стрелок часов вперед секундными импульсами. Подстроечный конденсатор С2 служит для точной установки частоты кварцевого генератора. Стабилитрон VD2 стабилизирует питающие напряжение 9 В.

В устройстве использованы резисторы С2-23 и КИМ (R2), конденсаторы К50-29 (С4 и С6), КТ4-256 (С2), К10-17-16 (остальные). Кварцевый резонатор РК-724А-17БУ - от электронных часов на частоту 32768 Гц. Микросхему К561ТМ2 можно заменить на К176ТМ2, К561ТМ1, К176ТМ1. Транзисторы - любые кремниевые соответствующей проводимости и мощности. Силовой трансформатор любой малогабаритный, например, от сетевого адаптера с напряжением перемотанной вторичной обмотки 15-16 В.

Налаживание устройства сводится к проверке напряжений питания тестером, проверке осциллограмм. Для удобства просмотра осциллограмм необходимо ускорить процессы в схеме, для этого конденсатор С5 (0,33 мкФ) временно заменяют конденсатором с номиналом 1000 пФ, затем перемычкой с точки 5 подают запускающий импульс с вывода 1 микросхемы DD1. Вместо шагового двигателя к точкам 6 и 7 схемы целесообразно подключить резистор сопротивлением 1 кОм. Осциллограммы должны соответствовать приведенным на рис.2. После просмотра осциллограмм восстанавливают схему и с помощью цифрового частотомера, подключенного к выводу 14 микросхемы DD1 (точка К), в режиме измерения частоты, устанавливают частоту 32768 Гц, подбирая емкость конденсатора С1. Подстроечный конденсатор С2 при этом должен находиться в среднем положении.

В некоторых случаях возникает необходимость увеличить емкость конденсатора С2, подпаивая параллельно ему дополнительный конденсатор емкостью 22-33 пФ. Затем частотомер в режиме измерения периода импульсов подключают к выводу 4 микросхемы DD1 и конденсатором С2 устанавливают период следования секундных импульсов с точностью 1 мкс. Такую операцию целесообразно провести после "старения" кварцевого резонатора через несколько недель эксплуатации часов. Этим обеспечивается высокая точность хода часов.

При увеличении мощности блока питания и транзисторов мостового усилителя к данной схеме можно подключить несколько вторичных часов, расположенных в разных помещениях здания. Подобное устройство, собранное на. четырех микросхемах [4], позволяет запитывать до 40 вторичных часов.

Конструктивно понижающий трансформатор Т1, выпрямительный мост VD7 и конденсатор С6 можно разместить в корпусе доработанного сетевого адаптера. Все детали устройства, кроме кнопок S1 и S2, установлены на печатной плате, изображенной на рис.3.

Схема управления шаговым двигателем часов

Штриховыми линиями на плате показаны три перемычки. Печатная плата изготовлена из одностороннего фольгированного стеклотекстолита толщиной 1,5 мм. Кнопки крепят на боковой стенке часов.

Литература:

  1. Алексеев С. Первичные кварцевые часы//Радио. -1985. -№10. -C 44-45.
  2. Гиниатуллин Х. Эволюция электронных часов//Радио. -1992. -№2-3. -C.18-19.
  3. Одновибраторы на D-триггерах//Радио. - 1984. -№7. -C 58.
  4. Бирюков С. Первичные кварцевые часы//Радио. -2000. -№6. -C.34.

Автор: В.В.Черленевский

Смотрите другие статьи раздела Электродвигатели.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Оптимальная продолжительность сна 12.11.2025

Сон играет ключевую роль в поддержании здоровья, когнитивных функций и общего самочувствия. Несмотря на широко распространенный стереотип о восьмичасовом сне, последние исследования показывают, что оптимальная продолжительность сна для большинства здоровых взрослых ближе к семи часам. Эволюционный биолог из Гарварда, Дэниел Э. Либерман, утверждает, что традиционная норма восьми часов сна - это скорее культурное наследие индустриальной эпохи, чем биологическая необходимость. По его словам, полевые исследования, проведенные в сообществах, не использующих электричество, показывают, что средняя продолжительность сна составляет 6-7 часов, что значительно отличается от общепринятого стандарта. Современные эпидемиологические данные подтверждают этот взгляд. Исследования выявили так называемую "U-образную кривую" зависимости между продолжительностью сна и рисками для здоровья. Минимальные показатели заболеваемости и смертности наблюдаются именно у людей, спящих около семи часов в сутки. ...>>

Дефицит кислорода усиливает выброс закиси азота 12.11.2025

Парниковые газы играют ключевую роль в изменении климата, а закись азота (N2O) - один из наиболее опасных среди них. Этот газ не только втрое сильнее углекислого газа в удержании тепла, но и разрушает озоновый слой. Недавнее исследование американских ученых показало, что микробы в зонах с низким содержанием кислорода активно производят N2O, усиливая глобальные климатические риски. Команда из Университета Пенсильвании изучала прибрежные воды у Сан-Диего и провела наблюдения на глубинах от 40 до 120 метров в Восточной тропической северной части Тихого океана - одной из крупнейших зон дефицита кислорода. Исследователи сосредоточились на том, как морские микроорганизмы превращают нитраты в закись азота. В ходе работы выяснилось, что существует два пути образования N2O. Один путь начинается с нитрата, другой - с нитрита. На первый взгляд более короткий путь должен быть эффективнее, однако микробы, использующие нитрат, продуцируют больше газа, поскольку этот "сырьевой" источник более д ...>>

Омега-3 помогают молодым кораллам выживать 11.11.2025

Сохранение коралловых рифов становится все более актуальной задачей в условиях глобального изменения климата. Молодые кораллы особенно уязвимы на ранних стадиях развития, когда стрессовые условия и нехватка питательных веществ могут привести к высокой смертности. Недавнее исследование ученых из Технологического университета Сиднея показывает, что специальные пищевые добавки способны существенно повысить выживаемость личинок кораллов. В ходе работы исследователи разработали особый состав "детского питания" для коралловых личинок. В него вошли масла, богатые омега-3 жирными кислотами, а также важные стерины, необходимые для формирования клеточных мембран. Личинки, получавшие эти добавки, развивались быстрее, становились крепче и демонстрировали более высокую устойчивость к стрессовым факторам. Особое внимание ученые уделили липидам. Анализ показал, что личинки активно усваивают эти вещества, что напрямую влияет на их жизнеспособность. Стерины, содержащиеся в корме, повышают устойчи ...>>

Случайная новость из Архива

Противопожарный эко-гель 05.10.2019

Лесные пожары - важная часть многих экосистем. Но столетия, в течение которых люди борются с ними, вкупе с жаркой погодой приводят ко все более сильным возгораниям, потушить которые не удается месяцами. Здесь есть два решения: либо позволить лесам гореть в небольших масштабах, но регулярно, чтобы предотвратить дальнейшие более крупные события, либо разработать способ защиты растений от огня.

Второй вариант представляется наилучшим, так как от пожаров страдают не только лесные животные, но и люди, проживающие в деревнях и городах. Горение лесов также снижает количество посылаемого в атмосферу кислорода и увеличивает уровни углекислого газа, что способствует потеплению. Для борьбы с активными пожарами экстренные службы используют огнегасящие агенты, такие как гели, впитывающие воду и суперабсорбирующие полимеры, использующиеся, например, в подгузниках.

Сегодня в таких гелях наиболее активно применяют фосфат аммония и его производные. Однако составы на его основе теряют эффективность, как только испаряется захваченная ими вода. Такое часто происходит менее чем за час в обычных условиях лесных пожаров.

Чтобы повысить эффективность тушения пожаров и продлить время испарения воды из гелей, команда ученых из Стэнфордского университета создала гелеобразное вещество на основе целлюлозы. Оно остается на поверхности в течение долгого времени после нанесения, даже несмотря на дождь и ветер.

Созданный учеными материал был испытан на траве и кустарнике вида Adenostoma fasciculatum. Обнаружилось, что гель продолжает защищать растительность от действия огня даже после выпадения полутора сантиметров осадков, тогда как используемые сегодня вещества смываются с листьев практически полностью. Разработанный гель содержит только нетоксичные вещества, которые не опасны ни для растений, ни для животных и людей.

Другие интересные новости:

▪ Сверхлегкий пулемет FN Evolys

▪ Гибридная автомобильная технология с маховиком

▪ Вибротерапия помогает от диабета

▪ Горячее прошлое кометы

▪ В теле человека нашли новый орган

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Медицина. Подборка статей

▪ статья Навозну кучу разрывая, Петух нашел жемчужное зерно. Крылатое выражение

▪ статья Где впервые появились апельсины? Подробный ответ

▪ статья Змееголовник. Легенды, выращивание, способы применения

▪ статья Применение антенных усилителей. Энциклопедия радиоэлектроники и электротехники

▪ статья Антенный усилитель МВ. Энциклопедия радиоэлектроники и электротехники

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:





Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2025