Бесплатная техническая библиотека ЭНЦИКЛОПЕДИЯ РАДИОЭЛЕКТРОНИКИ И ЭЛЕКТРОТЕХНИКИ Индикатор подключения электроприборов к сети 220 В. Энциклопедия радиоэлектроники и электротехники Энциклопедия радиоэлектроники и электротехники / Индикаторы, датчики, детекторы Пишу по следам публикации в №12 "Электрика" [1]. Важность этой темы я осознал недавно, когда мои домашние забыли утром выключить электроплиту, и к вечеру на электросчетчике "накрутило" энергии на лишние 3 грн. Схема в [1] очень проста, но вызвала такие возражения. 1. В современных домах электропроводка скрыта в стене. Где находится этот ввод в квартиру? Скорее всего, в самом неудобном месте. 2. Хорошо, если есть в доме трансформатор. Если нет, его нужно покупать, а деталь эта не из дешевых (и не всякий трансформатор подойдет). 3. В квартире есть приборы, которые постоянно включены. Одни из них включаются время от времени (холодильник), другие работают постоянно (электронные часы, электронный термометр). Что делать с ними? 4. Если Вы забыли выключить лампочку в кладовой мощностью 25 Вт, то к вечеру дополнительный расход составит несколько копеек. Нужно ли для этого ставить индикатор? 5. Невыключенная радиоаппаратура напоминает о себе звуком, поэтому трудно этого не заметить. 6. Единственная электроустановка, которую нужно снабдить индикатором подключения, это электроплита. Вот здесь и нужно ставить индикатор подключения. Простейший индикатор подключения - неоновая лампочка или светодиодный индикатор, подключенный к проводам сети после выключателя. Если выключатель отключен, указанные приборы не светятся. Но в электроплите таких выключателей много и установлены они в труднодоступных (изнутри) местах. Поэтому нужно устанавливать датчик тока потребления. Обычно это резистор с малым сопротивлением (чтобы не забирать из сети большую мощность), включаемый в разрыв одного из проводов сети. Теперь произведем небольшие расчеты. На минимальной мощности (порядка 100 Вт) электроплита потребляет от сети ток 0,5 А. При использовании резистора сопротивлением 1 Ом в нем выделяется мощность 0,25 Вт. Но при максимальном токе электроплиты 30 А (включены все конфорки) на этом резисторе будет выделяться мощность 900 Вт при напряжении на резисторе 30 В! А это солидная часть потребления плиты, расходуемая впустую. Таким образом, нужно как-то ограничить напряжение на резисторе. Для этой цели прекрасно подходят мощные диоды VD1, VD2, шунтирующие резистор R1 в прямом и обратном направлениях (рис.1). При токе через резистор 0,5 А падение напряжения на нем составляет 0,5 В, а при таком напряжении кремниевые диоды VD1 и VD2 заперты. По мере повышения напряжения на резисторе диоды постепенно открываются и входят в насыщение при прямом напряжении порядка 0,8...1 В (рис.2). На диодах начинает выделяться мощность, они разогреваются и, как видно по характеристикам рис.2 напряжение на них уменьшается. Таким образом, диоды становятся идеальными ограничителями напряжения. Вместе с диодами греется и резистор R1. Терморезистор R2 электрически изолирован от R1, но связан с ним механически, и поэтому также греется. От R2 к собственно индикатору (на рис.1 выделен штрихпунктиром) протянута линия связи (телефонный провод). Делитель R4, R2, R3 в базовой цепи транзистора VT1 рассчитан так, что при нормальной температуре терморезистора R2 транзистор VT1 заперт и светодиод HL1 не светится. При нагреве терморезистора R2 транзистор открывается, и светодиод загорается, сообщая от том, что нагрузка включена. В качестве источника питания используется гальванический элемент. Если светодиод просто светится, то это может не привлечь внимания человека, уходящего из квартиры. В схеме рис.3 (показан только собственно индикатор) установлен низкочастотный генератор на КМОП цифровых элементах И-НЕ DD1. При нормальной температуре терморезистора R2 делитель R2R3 обеспечивает напряжение на входе 1 элемента DD1.1 ниже половины напряжения питания, поэтому этот элемент закрыт, на его выходе 3 находится лог."1", соответственно на выходе 4 элемента DD1.2 - лог."0". Транзистор VT1 закрыт, и светодиод HL1 не светится. При нагреве терморезистора R2 напряжение на делителе R2/R3 превышает половину напряжения питания, генератор запускается с частотой примерно 1 Гц. С этой частотой начинает мигать светодиод. При большой нагрузке (ток нагрузки до 15-20 А) на диодах VD1, VD2 начинает выделяться мощность примерно по 10 Вт. Поэтому диоды нужно ставить на радиаторы, к сожалению, каждый на свой радиатор. Каждый транзистор можно превратить в диод, если закоротить коллектор и базу. Используя транзисторы разного типа проводимости (как показано на рис.4), можно реализовать ту же пару диодов, но, поскольку коллекторы транзисторов соединены вместе, то можно обойтись одним радиатором. Простейший расчет радиатора на мощность 20 Вт можно произвести по методике [2]. Кроме тепловой связи между измерительным элементом R1 и индикатором можно использовать также и оптическую связь. Но для работы светоизлучающего элемента напряжения порядка 1 В, выделяющегося на измерительном элементе, недостаточно. Необходимо повысить сопротивление резистора R1 хотя бы до 5-6 Ом, чтобы при токе 0,5 А падение напряжения составило 2,5-3 В. Но тогда для ограничения напряжения на R1 необходимо ставить две ветви по три диода. Вместо диодов можно использовать тиристоры (рис.5). Указанные на рис.5 тиристоры VS1, VS2 типа КУ202 срабатывают при напряжении на управляющих электродах порядка 4...8 В. Тиристор включается, и напряжение на нем остается порядка 2 В. На резисторе R1 напряжение равно ±2 В, но в начале каждого полупериода сетевого напряжения образуются "вспышки" по 4...8 В. Этими "вспышками" запускается передающий диод транзисторного оптрона UB1. Приемный транзистор оптрона открывается, и загорается светодиод HL1 (в динамическом режиме). Во всех описанных выше схемах питание индикатора осуществлялось за счет гальванического элемента. Если элемент "подсел", то индикатор может не работать. На рис.6 показано непосредственное подключение индикатора к измерительному элементу R1 (для схемы рис.5, для остальных схем такое включение не работает). При этом индикатор оказывается под сетевым напряжением. Для уменьшения опасности измерительный элемент необходимо включить в разрыв нулевого провода сети. Литература:
Автор: И.Н.Проксин Смотрите другие статьи раздела Индикаторы, датчики, детекторы. Читайте и пишите полезные комментарии к этой статье. Последние новости науки и техники, новинки электроники: Курение отупляет
02.12.2024 Технология точного распыления Greeneye Technology
02.12.2024 Раковые клетки погибают в невесомости
01.12.2024
Другие интересные новости: ▪ Зарядная станция Tesla Supercharger V3 ▪ Накопители данных большой емкости ▪ В российских поездах появится интернет ▪ Объявлены окончательные характеристики стандарта 5G Лента новостей науки и техники, новинок электроники
Интересные материалы Бесплатной технической библиотеки: ▪ раздел сайта Жизнь замечательных физиков. Подборка статей ▪ статья Основной закон электростатики. История и суть научного открытия ▪ статья Почему ценность денег определяется золотом? Подробный ответ ▪ статья Руководитель художественного парка культуры и отдыха. Должностная инструкция ▪ статья Широкополосный УМЗЧ с малыми искажениями. Энциклопедия радиоэлектроники и электротехники ▪ статья Возраст по размеру обуви. Секрет фокуса
Оставьте свой комментарий к этой статье: Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте www.diagram.com.ua |